If you see this message after the page is completely loaded, then JavaScript is not supported or disabled in your browser. Please consider enabling JavaScript for this site.

PRLA_LYSEN_200_397

Alpha-lytic protease [Peptidase S1 family]

Composition of the binding site

Protein chains homodimer
A1 (PRLA_LYSEN):214:216, 235, 258, 304, 320:324, 337:342, 357:363, 379214:216, 235, 258, 304, 320:324, 337:342, 357:363, 379
A2 (PRLA_LYSEN):288, 291, 352, 396, 397288, 291, 352, 396, 397

Full PDB list

1boq, 1gba, 1gbb, 1gbc, 1gbd, 1gbe, 1gbf, 1gbh, 1gbi, 1gbj, 1gbk, 1gbl, 1gbm, 1p01, 1p02, 1p03, 1p04, 1p05, 1p06, 1p09, 1p10, 1p11, 1p12, 1qq4, 1qrw, 1qrx, 1ssx, 1tal, 2alp, 2h5c, 2h5d, 2lpr, 2ull, 3lpr, 3m7t, 3m7u, 3pro, 3qgj, 3urc, 3urd, 3ure, 4pro, 5lpr, 6lpr, 7lpr, 8lpr, 9lpr (redundant Pocketome entry)

Pocket contact map

[download in TSV format]
   
PDB.ch
   
ligand
A1 A2
S
2
1
4
L
2
1
5
C
2
1
6
H
2
3
5
F
2
5
8
A
3
2
0
N
3
2
1
Y
3
2
2
A
3
2
3
E
3
2
4
M
3
3
7
G
3
3
8
R
3
3
9
G
3
4
0
D
3
4
1
S
3
4
2
M
3
5
7
S
3
5
8
G
3
5
9
G
3
6
0
N
3
6
1
V
3
6
2
Q
3
6
3
L
3
7
9
R
2
8
8
T
2
9
1
Q
3
5
2
T
3
9
6
G
3
9
7
[1]1gba.a none . . . . . . . . . . A . . . . . . . . A . . . . . . . . .
[1]1gbb.a AAPb2a23 . . . . . . . . . . A . . . . * . . . A . . . . . . . . .
[1]1gbc.a AAPble26 . . . . . . . . . . A . . . . * . . . A . . . . . . . . .
[1]1gbd.a AAPb2f29 . . . . . . . . . . A . . . . * . . . A . . . . . . . . .
[1]1gbe.a none . . . . . . . . . . A . . . . . . . . L . . . . . . . . .
[1]1gbf.a AAPb2a23 . . . . . . . . . . A . . . . * . . . L . . . . . . . . .
[1]1gbh.a AAPble26 . . . . . . . . . . A . . . . * . . . L . . . . . . . . .
[1]1gbi.a AAPb2f28 . . . . . . . . . . A . . . . * . . . L . . . . . . . . .
[1]1gbj.a none . . . . . . . . . . A . . . . . . . . . . . . . . . . . .
[1]1gbk.a AAPb2a23 . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]1gbl.a AAPble26 . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]1gbm.a AAPb2f29 . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]1p01.a 0eg27 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p02.a AAPb2a23 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p03.a AAPb2v25 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p04.a AAPb2i26 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p05.a AAPbno26 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p06.a AAPb2f28 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p09.a none . . . . . . . . . . . . . . . . A . . . . . . . . . . . .
[1]1p10.a AAPb2v25 . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]1p11.e bocAAPpva,bocAAPpva.lacA74 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1p12.e bocAAPpva.lacA42 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]1qq4.a none . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]1tal.a tam8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]2h5d.a msuAAPb2v33 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .
[1]2lpr.a AAPb2v25 . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]3lpr.a AAPbno26 . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]3m7t.a none . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3m7u.a LQPI33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3pro.a aes12 . . . . . . . . . . . . . . . * A . . . . . . . - - - - -
[1]3qgj.c aceAAP2a125 . . . . . . . . . . . . . . . * . . . . . . . . - - - - -
[1]5lpr.a AAPb2a23 . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]6lpr.a AAPbno26 . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]7lpr.a AAPble26 . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]8lpr.a AAPb2f29 . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]9lpr.a AAPble26 . . . . . . . . . . . . . . . * . . . . . . . . . . . . .

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Site contact map

[download in TSV format]
   
PDB.ch
A1 A2
S
2
1
4
L
2
1
5
C
2
1
6
H
2
3
5
F
2
5
8
R
3
0
4
A
3
2
0
N
3
2
1
Y
3
2
2
A
3
2
3
E
3
2
4
M
3
3
7
G
3
3
8
R
3
3
9
G
3
4
0
D
3
4
1
S
3
4
2
M
3
5
7
S
3
5
8
G
3
5
9
G
3
6
0
N
3
6
1
V
3
6
2
Q
3
6
3
L
3
7
9
R
2
8
8
T
2
9
1
Q
3
5
2
T
3
9
6
G
3
9
7
[1]1gba.a . . . . . . . . . . . A . . . . * . . . A . . . . . . . . .
[1]1gbb.a . . . . . . . . . . . A . . . . * . . . A . . . . . . . . .
[1]1gbc.a . . . . . . . . . . . A . . . . * . . . A . . . . . . . . .
[1]1gbd.a . . . . . . . . . . . A . . . . * . . . A . . . . * . . . .
[1]1gbe.a . . . . . . . . . . . A . . . . * . . . L . . . . * . . . .
[1]1gbf.a . . . . . . . . . . . A . . . . * . . . L . . . . . . . . .
[1]1gbh.a . . . . . . . . . . . A . . . . * . . . L . . . . * . . . .
[1]1gbi.a . . . . . . . . . . . A . . . . * . . . L . . . . . . . . .
[1]1gbj.a . . . . . . . . . . . A . . . . * . . . . . * . . * * . . .
[1]1gbk.a . . . . . . . . . . . A . . . . * . . . . . . . . * . . . .
[1]1gbl.a . . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]1gbm.a . . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]1p01.a . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1p02.a . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1p03.a . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1p04.a . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1p05.a . . . . . . . . . . . * . . . . * . . . . . . . . . . . . .
[1]1p06.a . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1p09.a . . . . . . . . . . . . . . . . * A . . . . * . . . . . . .
[1]1p10.a . . . . . . . . . . . . . . . . * A . . . . * . . . . . . .
[1]1p11.e . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1p12.e . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]1qq4.a . . . . . . . . . . . * . . . . * . . . . . . . . . * . . .
[1]1tal.a . . . . . . . . . . . * . . . . * . . . . . * . . . * . . .
[1]2h5d.a . . . . . . . . . . . * . . . . * . . . . . * . . . . . . .
[1]2lpr.a . . . . . . . . . . . A . . . . * . . . . . * . . . . . . .
[1]3lpr.a . . . . . . . . . . . A . . . . * . . . . . . . . . . . . .
[1]3m7t.a . . . . . S . . . . . * . . . . * . . . . . * . . . . . . .
[1]3m7u.a . . . . . . . . . . . * . . . . * . . . . . . . . . . . . .
[1]3pro.a . . . . . . . . . . . * . . . . * A . . . . * . . - - - - -
[1]3qgj.c . . . . . . . . . . . * . . . . * . . . . . * . . - - - - -
[1]5lpr.a . . . . . . . . . . . . . . . . * A . . . . * . . . . . . .
[1]6lpr.a . . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]7lpr.a . . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]8lpr.a . . . . . . . . . . . . . . . . * A . . . . . . . . . . . .
[1]9lpr.a . . . . . . . . . . . * . . . . * . . . . . . . . . . . . .

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X X X X X  clash
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Pocket-ligand steric compatibility

Ligands (x) vs pockets (y) colored by number of steric clashes

zoom: [−] [+]; [view as image]; [download as text]

pocketligand
≥10
9
8
7
6
5
4
3
2
1
0
1gba.a is apo
1gbb.a:AAPb2a
1gbc.a:AAPble
1gbd.a:AAPb2f
1gbe.a is apo
1gbf.a:AAPb2a
1gbh.a:AAPble
1gbi.a:AAPb2f
1gbj.a is apo
1gbk.a:AAPb2a
1gbl.a:AAPble
1gbm.a:AAPb2f
1p01.a:0eg
1p02.a:AAPb2a
1p03.a:AAPb2v
1p04.a:AAPb2i
1p05.a:AAPbno
1p06.a:AAPb2f
1p09.a is apo
1p10.a:AAPb2v
1p11.e:bocAAPpva,bocAAPpva.lacA
1p12.e:bocAAPpva.lacA
1qq4.a is apo
1tal.a:tam
2h5d.a:msuAAPb2v
2lpr.a:AAPb2v
3lpr.a:AAPbno
3m7t.a is apo
3m7u.a:LQPI
3pro.a:aes
3qgj.c:aceAAP2a1
5lpr.a:AAPb2a
6lpr.a:AAPbno
7lpr.a:AAPble
8lpr.a:AAPb2f
9lpr.a:AAPble
[1] 1gba.a
-
0.7 0.5 1.2 - 0.5 0.6 1.3 - 0.5 0.5 1.3 0.7 0.6 0.5 0.8 0.9 1.4 - 0.7 1.2 1.3 - 0.4 0.7 0.6 1.0 - 0.8 1.0 0.8 0.6 1.1 0.8 1.1 0.7
[1] 1gbb.a -
0.6
0.4 0.8 - 0.4 0.4 0.5 - 0.6 0.4 1.1 0.5 0.5 0.5 0.5 0.7 0.5 - 0.5 0.9 1.1 - 0.8 0.5 0.5 0.9 - 0.2 0.9 0.6 0.5 0.9 0.6 1.0 0.6
[1] 1gbc.a - 0.7
0.6
0.9 - 0.6 0.6 0.7 - 0.6 0.6 1.1 0.5 0.6 0.6 0.6 0.6 0.8 - 0.5 1.1 1.1 - 0.8 0.7 0.6 0.9 - 0.1 0.7 0.6 0.5 0.8 0.6 1.0 0.5
[1] 1gbd.a - 0.6 0.4
0.6
- 0.4 0.4 0.8 - 0.6 0.4 0.7 0.5 0.4 0.4 0.5 0.7 0.7 - 0.4 1.0 1.2 - 0.9 0.4 0.5 0.8 - 0.1 0.8 0.6 0.6 0.6 0.6 0.8 0.7
[1] 1gbe.a - 0.9 1.2 2.4
-
0.8 0.9 1.6 - 0.8 1.2 3.1 0.7 0.6 0.7 1.1 1.1 1.4 - 0.7 1.5 1.5 - 0.6 0.7 0.7 2.6 - 1.3 1.3 0.9 0.6 2.4 1.5 2.3 1.4
[1] 1gbf.a - 0.7 1.1 1.7 -
0.6
0.7 0.7 - 0.6 1.2 2.6 0.6 0.5 0.6 0.8 0.7 0.6 - 0.6 1.3 1.1 - 0.7 0.7 0.8 2.5 - 0.4 0.9 0.6 0.5 2.1 1.5 2.2 1.1
[1] 1gbh.a - 0.9 0.8 2.1 - 0.5
0.7
0.8 - 0.5 1.1 2.7 0.7 0.6 0.7 0.7 0.7 0.9 - 0.5 1.2 1.3 - 0.9 0.6 0.7 2.4 - 0.5 0.7 0.7 0.7 2.4 1.6 2.2 1.0
[1] 1gbi.a - 0.7 1.1 2.0 - 0.4 0.8
0.7
- 0.5 1.1 2.7 0.7 0.4 0.7 0.7 0.7 0.5 - 0.7 1.2 1.3 - 0.4 0.7 0.8 2.6 - 0.5 0.8 0.7 0.4 2.6 1.6 2.0 1.0
[1] 1gbj.a - 0.7 0.6 1.1 - 0.6 0.6 1.4
-
0.8 0.7 0.9 0.6 0.7 0.6 0.9 1.2 1.5 - 0.6 1.3 1.3 - 0.6 0.6 0.8 0.8 - 1.0 0.9 0.7 0.6 0.9 0.7 1.3 1.1
[1] 1gbk.a - 0.6 0.5 0.6 - 0.4 0.4 0.6 -
0.6
0.4 0.6 0.5 0.5 0.5 0.5 0.8 0.8 - 0.5 0.9 1.1 - 0.9 0.4 0.4 0.4 - 0.4 1.0 0.6 0.5 0.5 0.5 0.7 0.5
[1] 1gbl.a - 0.6 0.6 0.8 - 0.6 0.6 0.7 - 0.6
0.6
0.6 0.5 0.5 0.5 0.5 0.5 0.8 - 0.5 1.1 1.2 - 0.7 0.6 0.5 0.7 - 0.3 0.7 0.6 0.5 0.5 0.5 0.7 0.5
[1] 1gbm.a - 0.8 0.6 0.7 - 0.6 0.4 0.7 - 0.6 0.5
0.6
0.5 0.5 0.5 0.5 0.6 1.0 - 0.5 1.2 1.0 - 0.6 0.4 0.5 0.4 - 0.6 0.8 0.6 0.5 0.5 0.5 0.6 0.5
[1] 1p01.a - 0.6 1.0 1.9 - 0.6 0.7 0.7 - 0.6 1.1 2.2
0.5
0.5 0.5 0.6 0.9 0.6 - 0.5 1.1 1.0 - 0.8 0.6 0.7 1.7 - 0.4 0.6 0.6 0.5 1.4 1.0 1.6 0.7
[1] 1p02.a - 0.9 1.8 2.3 - 0.7 1.2 0.8 - 0.7 1.5 2.6 0.6
0.5
0.6 0.7 0.9 0.8 - 0.8 1.2 1.2 - 0.6 0.8 0.8 1.8 - 0.5 0.9 0.7 0.5 1.2 1.2 2.1 0.9
[1] 1p03.a - 0.9 1.3 1.4 - 0.6 0.7 0.8 - 0.6 1.1 2.4 0.4 0.4
0.5
0.6 0.8 0.9 - 0.4 1.0 1.0 - 0.6 0.6 0.7 1.8 - 0.6 0.8 0.6 0.4 1.1 0.9 2.0 0.9
[1] 1p04.a - 0.9 1.1 1.6 - 0.6 0.6 0.7 - 0.6 0.8 1.8 0.5 0.4 0.4
0.5
0.6 0.5 - 0.4 1.1 0.9 - 0.6 0.4 0.5 1.5 - 0.5 0.6 0.6 0.5 1.2 0.8 1.7 0.5
[1] 1p05.a - 0.9 1.0 1.5 - 0.6 0.5 0.8 - 0.7 1.1 1.8 0.6 0.5 0.5 0.5
0.5
0.5 - 0.5 1.1 1.0 - 0.3 0.6 0.6 1.5 - 0.5 0.7 0.6 0.5 1.2 0.9 1.7 0.6
[1] 1p06.a - 0.7 1.5 2.1 - 0.5 1.0 0.7 - 0.5 1.3 2.2 0.5 0.5 0.5 0.4 0.5
0.5
- 0.5 1.0 1.1 - 0.5 0.7 0.6 1.6 - 0.4 0.8 0.7 0.5 1.4 1.1 1.8 0.8
[1] 1p09.a - 0.6 0.8 1.2 - 0.6 0.6 1.1 - 0.7 1.0 1.4 0.6 0.6 0.6 0.6 1.0 1.2
-
0.6 1.0 1.2 - 0.5 0.6 0.6 1.0 - 0.9 1.0 0.7 0.6 1.0 0.8 1.5 1.0
[1] 1p10.a - 0.6 0.7 1.2 - 0.7 0.6 0.8 - 0.6 0.9 1.1 0.5 0.5 0.5 0.5 0.8 0.8 -
0.5
1.1 1.1 - 0.8 0.7 0.5 0.7 - 0.3 0.7 0.6 0.5 0.8 0.6 1.2 0.7
[1] 1p11.e - 0.9 1.3 2.0 - 0.6 0.7 0.7 - 0.6 1.2 2.4 0.5 0.5 0.4 0.5 0.8 0.5 - 0.5
1.1
0.8 - 0.9 0.6 0.4 1.5 - 1.0 0.8 0.6 0.5 1.4 1.0 1.8 0.6
[1] 1p12.e - 0.9 1.1 2.0 - 0.4 0.5 0.8 - 0.7 1.0 2.4 0.6 0.4 0.4 0.5 0.8 0.5 - 0.4 0.7
0.9
- 0.7 0.4 0.6 1.6 - 1.2 0.8 0.6 0.4 1.4 1.0 1.9 0.7
[1] 1qq4.a - 0.5 1.3 1.7 - 0.6 1.0 0.9 - 0.8 1.5 2.5 0.8 0.6 0.8 1.0 0.7 1.0 - 0.8 2.0 2.0
-
0.1 0.8 0.9 2.0 - 0.6 0.8 0.9 0.6 1.6 1.1 2.0 1.0
[1] 1tal.a - 0.7 1.5 2.1 - 0.7 1.1 1.1 - 0.8 1.6 2.3 0.6 0.5 0.6 0.8 0.9 1.1 - 0.6 1.8 1.6 -
0.1
0.8 0.9 2.0 - 0.6 0.6 0.7 0.5 1.4 1.3 2.3 1.0
[1] 2h5d.a - 0.9 1.2 2.0 - 0.6 0.5 0.9 - 0.7 1.0 2.4 0.4 0.5 0.5 0.6 0.9 1.3 - 0.4 1.2 1.2 - 1.0
0.4
0.5 1.6 - 0.7 0.8 0.6 0.5 1.1 0.9 2.0 0.7
[1] 2lpr.a - 0.6 0.5 1.2 - 0.6 0.4 0.5 - 0.6 0.5 0.9 0.5 0.5 0.5 0.4 0.6 0.5 - 0.5 1.1 1.0 - 0.8 0.6
0.4
0.5 - 0.4 0.6 0.6 0.5 0.8 0.6 1.1 0.6
[1] 3lpr.a - 0.7 0.6 0.9 - 0.4 0.4 0.6 - 0.6 0.5 0.9 0.5 0.5 0.5 0.6 0.9 0.6 - 0.5 1.1 1.0 - 0.8 0.4 0.5
0.5
- 0.4 0.8 0.6 0.5 0.6 0.6 0.9 0.6
[1] 3m7t.a - 0.8 1.2 2.2 - 0.8 1.0 1.3 - 0.6 1.5 2.4 0.7 0.5 0.5 0.5 1.0 1.0 - 0.5 1.3 1.3 - 0.1 0.6 0.8 2.1
-
0.6 0.6 0.8 0.7 1.8 1.4 2.6 1.0
[1] 3m7u.a - 0.8 0.7 1.5 - 0.9 0.8 1.0 - 0.6 0.9 2.0 0.5 0.5 0.5 0.5 0.6 0.9 - 0.5 1.6 1.4 - 0.5 0.7 0.5 1.4 -
0
0.7 0.8 0.5 1.3 0.6 1.5 0.6
[1] 3pro.a - 0.8 0.9 1.7 - 0.8 1.1 0.7 - 0.9 1.2 1.8 0.7 0.6 0.8 0.8 0.7 0.8 - 0.7 0.9 0.9 - 0.2 0.9 0.7 1.4 - 0.3
0.7
0.8 0.7 1.2 0.9 1.3 0.8
[1] 3qgj.c - 0.9 1.2 2.0 - 0.4 0.6 0.9 - 0.7 1.2 2.3 0.6 0.5 0.5 0.5 0.9 0.9 - 0.5 0.6 0.4 - 0.6 0.4 0.5 1.6 - 1.0 1.1
0.6
0.6 1.6 1.2 1.8 0.7
[1] 5lpr.a - 0.6 0.9 1.3 - 0.6 1.0 0.7 - 0.7 1.1 1.7 0.6 0.5 0.6 0.9 0.7 0.5 - 0.8 1.2 1.2 - 0.8 0.9 0.8 1.1 - 0.4 0.9 0.6
0.5
0.9 0.6 1.5 0.7
[1] 6lpr.a - 0.7 0.6 0.6 - 0.6 0.5 0.5 - 0.6 0.5 0.7 0.5 0.5 0.5 0.5 0.6 0.5 - 0.5 1.1 1.1 - 0.8 0.5 0.5 0.6 - 0.5 1.1 0.6 0.5
0.5
0.5 0.7 0.6
[1] 7lpr.a - 0.6 0.4 0.7 - 0.6 0.5 0.5 - 0.6 0.5 0.8 0.5 0.5 0.5 0.5 0.6 0.5 - 0.5 1.1 1.3 - 0.8 0.5 0.5 0.6 - 0.3 1.0 0.6 0.5 0.5
0.5
0.7 0.6
[1] 8lpr.a - 0.7 0.5 0.6 - 0.5 0.4 0.8 - 0.6 0.5 0.8 0.5 0.4 0.4 0.6 0.5 0.8 - 0.4 0.9 1.1 - 0.6 0.5 0.5 0.5 - 0.5 0.8 0.6 0.5 0.5 0.5
0.5
0.7
[1] 9lpr.a - 0.9 1.0 1.3 - 0.6 0.7 0.7 - 0.6 0.7 1.6 0.4 0.5 0.5 0.4 0.6 0.8 - 0.4 1.0 1.0 - 0.5 0.6 0.4 1.0 - 0.5 0.8 0.6 0.5 0.8 0.7 1.3
0.6
[Pocket-ligand steric clashes matrix]

Pocket clash dissimilarity (1 cluster)

Pockets (x) vs pockets (y) colored by ligand clash profile difference

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥1.
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
1gba.a
1gbb.a
1gbc.a
1gbd.a
1gbe.a
1gbf.a
1gbh.a
1gbi.a
1gbj.a
1gbk.a
1gbl.a
1gbm.a
1p01.a
1p02.a
1p03.a
1p04.a
1p05.a
1p06.a
1p09.a
1p10.a
1p11.e
1p12.e
1qq4.a
1tal.a
2h5d.a
2lpr.a
3lpr.a
3m7t.a
3m7u.a
3pro.a
3qgj.c
5lpr.a
6lpr.a
7lpr.a
8lpr.a
9lpr.a
[1] 1gba.a
0
.03 .02 .04 .08 .09 .10 .11 .05 .05 .04 .04 .10 .10 .09 .09 .09 .13 .07 .05 .09 .11 .11 .10 .09 .06 .05 .09 .08 .12 .14 .08 .05 .05 .06 .08
[1] 1gbb.a .03
0
.02 .03 .10 .07 .09 .09 .07 .03 .03 .04 .07 .08 .08 .06 .06 .10 .06 .04 .08 .10 .13 .12 .09 .03 .02 .10 .09 .11 .13 .04 .03 .03 .04 .06
[1] 1gbc.a .02 .02
0
.03 .11 .08 .08 .10 .06 .04 .03 .03 .08 .08 .07 .07 .07 .11 .07 .05 .07 .09 .12 .11 .08 .04 .03 .10 .09 .12 .14 .05 .04 .04 .05 .06
[1] 1gbd.a .04 .03 .03
0
.10 .07 .09 .10 .07 .03 .05 .03 .08 .10 .09 .07 .07 .11 .05 .04 .09 .11 .13 .12 .09 .04 .03 .10 .09 .13 .14 .06 .03 .03 .03 .07
[1] 1gbe.a .08 .10 .11 .10
0
.06 .05 .06 .11 .11 .12 .13 .17 .18 .18 .16 .16 .19 .13 .12 .17 .19 .18 .17 .16 .13 .12 .16 .15 .19 .21 .15 .12 .12 .13 .15
[1] 1gbf.a .09 .07 .08 .07 .06
0
.03 .03 .14 .08 .10 .08 .13 .14 .14 .12 .12 .15 .12 .10 .14 .15 .18 .17 .15 .09 .08 .16 .15 .18 .19 .11 .08 .08 .08 .11
[1] 1gbh.a .10 .09 .08 .09 .05 .03
0
.03 .13 .10 .09 .09 .14 .15 .14 .13 .13 .17 .14 .12 .13 .15 .20 .19 .14 .10 .09 .17 .16 .18 .21 .12 .10 .10 .11 .11
[1] 1gbi.a .11 .09 .10 .10 .06 .03 .03
0
.15 .11 .11 .10 .14 .15 .15 .12 .11 .15 .15 .12 .16 .16 .20 .19 .17 .10 .10 .18 .16 .17 .20 .12 .10 .11 .10 .12
[1] 1gbj.a .05 .07 .06 .07 .11 .14 .13 .15
0
.06 .06 .07 .10 .12 .11 .11 .12 .13 .05 .05 .10 .12 .11 .08 .08 .06 .07 .08 .07 .11 .15 .08 .07 .07 .08 .11
[1] 1gbk.a .05 .03 .04 .03 .11 .08 .10 .11 .06
0
.03 .04 .07 .10 .09 .07 .07 .10 .05 .03 .09 .11 .12 .11 .09 .03 .02 .10 .09 .11 .13 .04 .02 .03 .03 .07
[1] 1gbl.a .04 .03 .03 .05 .12 .10 .09 .11 .06 .03
0
.03 .08 .09 .08 .08 .08 .10 .07 .05 .08 .10 .12 .11 .09 .04 .02 .10 .08 .10 .14 .05 .02 .03 .05 .06
[1] 1gbm.a .04 .04 .03 .03 .13 .08 .09 .10 .07 .04 .03
0
.09 .08 .07 .07 .07 .10 .08 .05 .08 .09 .12 .11 .08 .05 .03 .09 .08 .11 .13 .06 .04 .04 .02 .05
[1] 1p01.a .10 .07 .08 .08 .17 .13 .14 .14 .10 .07 .08 .09
0
.03 .03 .02 .04 .03 .07 .06 .03 .05 .08 .06 .04 .05 .05 .05 .07 .09 .09 .03 .06 .06 .08 .04
[1] 1p02.a .10 .08 .08 .10 .18 .14 .15 .15 .12 .10 .09 .08 .03
0
.02 .03 .04 .03 .09 .08 .02 .03 .08 .06 .04 .07 .08 .05 .08 .09 .07 .05 .09 .09 .09 .03
[1] 1p03.a .09 .08 .07 .09 .18 .14 .14 .15 .11 .09 .08 .07 .03 .02
0
.03 .04 .04 .09 .09 .02 .02 .09 .06 .03 .08 .08 .05 .08 .09 .08 .06 .09 .09 .08 .03
[1] 1p04.a .09 .06 .07 .07 .16 .12 .13 .12 .11 .07 .08 .07 .02 .03 .03
0
.01 .04 .07 .06 .04 .04 .09 .07 .05 .05 .06 .06 .06 .08 .08 .04 .07 .07 .06 .02
[1] 1p05.a .09 .06 .07 .07 .16 .12 .13 .11 .12 .07 .08 .07 .04 .04 .04 .01
0
.04 .09 .07 .05 .06 .09 .08 .07 .06 .06 .07 .06 .08 .08 .05 .07 .07 .06 .02
[1] 1p06.a .13 .10 .11 .11 .19 .15 .17 .15 .13 .10 .10 .10 .03 .03 .04 .04 .04
0
.10 .08 .05 .05 .08 .07 .07 .07 .08 .06 .07 .09 .08 .06 .09 .09 .09 .05
[1] 1p09.a .07 .06 .07 .05 .13 .12 .14 .15 .05 .05 .07 .08 .07 .09 .09 .07 .09 .10
0
.04 .08 .10 .11 .08 .08 .05 .06 .06 .06 .09 .12 .04 .05 .05 .07 .09
[1] 1p10.a .05 .04 .05 .04 .12 .10 .12 .12 .05 .03 .05 .05 .06 .08 .09 .06 .07 .08 .04
0
.08 .10 .11 .08 .08 .02 .03 .07 .08 .09 .12 .03 .04 .04 .04 .08
[1] 1p11.e .09 .08 .07 .09 .17 .14 .13 .16 .10 .09 .08 .08 .03 .02 .02 .04 .05 .05 .08 .08
0
.02 .10 .07 .02 .07 .07 .05 .09 .09 .07 .05 .08 .08 .09 .04
[1] 1p12.e .11 .10 .09 .11 .19 .15 .15 .16 .12 .11 .10 .09 .05 .03 .02 .04 .06 .05 .10 .10 .02
0
.10 .07 .04 .09 .09 .06 .09 .08 .06 .07 .10 .10 .10 .05
[1] 1qq4.a .11 .13 .12 .13 .18 .18 .20 .20 .11 .12 .12 .12 .08 .08 .09 .09 .09 .08 .11 .11 .10 .10
0
.03 .09 .13 .12 .05 .06 .11 .12 .12 .12 .11 .12 .08
[1] 1tal.a .10 .12 .11 .12 .17 .17 .19 .19 .08 .11 .11 .11 .06 .06 .06 .07 .08 .07 .08 .08 .07 .07 .03
0
.06 .10 .11 .02 .05 .08 .09 .09 .11 .10 .11 .07
[1] 2h5d.a .09 .09 .08 .09 .16 .15 .14 .17 .08 .09 .09 .08 .04 .04 .03 .05 .07 .07 .08 .08 .02 .04 .09 .06
0
.08 .09 .06 .08 .11 .08 .06 .10 .10 .10 .06
[1] 2lpr.a .06 .03 .04 .04 .13 .09 .10 .10 .06 .03 .04 .05 .05 .07 .08 .05 .06 .07 .05 .02 .07 .09 .13 .10 .08
0
.01 .09 .09 .09 .13 .02 .03 .04 .05 .07
[1] 3lpr.a .05 .02 .03 .03 .12 .08 .09 .10 .07 .02 .02 .03 .05 .08 .08 .06 .06 .08 .06 .03 .07 .09 .12 .11 .09 .01
0
.10 .09 .10 .13 .03 .02 .02 .03 .06
[1] 3m7t.a .09 .10 .10 .10 .16 .16 .17 .18 .08 .10 .10 .09 .05 .05 .05 .06 .07 .06 .06 .07 .05 .06 .05 .02 .06 .09 .10
0
.05 .08 .08 .07 .10 .09 .09 .06
[1] 3m7u.a .08 .09 .09 .09 .15 .15 .16 .16 .07 .09 .08 .08 .07 .08 .08 .06 .06 .07 .06 .08 .09 .09 .06 .05 .08 .09 .09 .05
0
.08 .11 .07 .08 .08 .09 .06
[1] 3pro.a .12 .11 .12 .13 .19 .18 .18 .17 .11 .11 .10 .11 .09 .09 .09 .08 .08 .09 .09 .09 .09 .08 .11 .08 .11 .09 .10 .08 .08
0
.06 .08 .10 .10 .11 .08
[1] 3qgj.c .14 .13 .14 .14 .21 .19 .21 .20 .15 .13 .14 .13 .09 .07 .08 .08 .08 .08 .12 .12 .07 .06 .12 .09 .08 .13 .13 .08 .11 .06
0
.11 .14 .14 .12 .09
[1] 5lpr.a .08 .04 .05 .06 .15 .11 .12 .12 .08 .04 .05 .06 .03 .05 .06 .04 .05 .06 .04 .03 .05 .07 .12 .09 .06 .02 .03 .07 .07 .08 .11
0
.04 .04 .05 .05
[1] 6lpr.a .05 .03 .04 .03 .12 .08 .10 .10 .07 .02 .02 .04 .06 .09 .09 .07 .07 .09 .05 .04 .08 .10 .12 .11 .10 .03 .02 .10 .08 .10 .14 .04
0
.01 .03 .06
[1] 7lpr.a .05 .03 .04 .03 .12 .08 .10 .11 .07 .03 .03 .04 .06 .09 .09 .07 .07 .09 .05 .04 .08 .10 .11 .10 .10 .04 .02 .09 .08 .10 .14 .04 .01
0
.04 .06
[1] 8lpr.a .06 .04 .05 .03 .13 .08 .11 .10 .08 .03 .05 .02 .08 .09 .08 .06 .06 .09 .07 .04 .09 .10 .12 .11 .10 .05 .03 .09 .09 .11 .12 .05 .03 .04
0
.06
[1] 9lpr.a .08 .06 .06 .07 .15 .11 .11 .12 .11 .07 .06 .05 .04 .03 .03 .02 .02 .05 .09 .08 .04 .05 .08 .07 .06 .07 .06 .06 .06 .08 .09 .05 .06 .06 .06
0
[Pocket clash dissimilarity matrix]

Site backbone RMSD (median 0.7 Å)

Pockets (x) vs pockets (y) colored by RMSD of site residue backbone atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
1gba.a
1gbb.a
1gbc.a
1gbd.a
1gbe.a
1gbf.a
1gbh.a
1gbi.a
1gbj.a
1gbk.a
1gbl.a
1gbm.a
1p01.a
1p02.a
1p03.a
1p04.a
1p05.a
1p06.a
1p09.a
1p10.a
1p11.e
1p12.e
1qq4.a
1tal.a
2h5d.a
2lpr.a
3lpr.a
3m7t.a
3m7u.a
3pro.a
3qgj.c
5lpr.a
6lpr.a
7lpr.a
8lpr.a
9lpr.a
[1] 1gba.a
0
0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.3 0.5 0.5 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.4 0.5 0.3 0.3 0.3 0.3 0.4
[1] 1gbb.a 0.2
0
0.1 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.4 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.5 0.2 0.2 0.2 0.2 0.2
[1] 1gbc.a 0.2 0.1
0
0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.4 0.5 0.2 0.2 0.2 0.2 0.2
[1] 1gbd.a 0.2 0.1 0.1
0
0.2 0.1 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.3 0.2 0.3 0.2 0.2 0.3 0.3 0.4 0.5 0.2 0.2 0.2 0.2 0.2
[1] 1gbe.a 0.2 0.2 0.2 0.2
0
0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.3 0.4 0.5 0.3 0.2 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.2 0.3
[1] 1gbf.a 0.3 0.2 0.2 0.1 0.2
0
0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.3 0.2 0.2 0.4 0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.2
[1] 1gbh.a 0.3 0.2 0.2 0.2 0.2 0.1
0
0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.3 0.2 0.2 0.4 0.4 0.3 0.4 0.2 0.2 0.2 0.2 0.2
[1] 1gbi.a 0.4 0.3 0.3 0.3 0.3 0.2 0.2
0
0.4 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.4 0.3 0.3 0.3 0.5 0.4 0.3 0.2 0.2 0.5 0.5 0.3 0.4 0.3 0.2 0.3 0.3 0.3
[1] 1gbj.a 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4
0
0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.1 0.2 0.4 0.4 0.3 0.2 0.4 0.2 0.2 0.2 0.3 0.4 0.4 0.2 0.2 0.2 0.3 0.3
[1] 1gbk.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2
0
0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.1 0.2 0.3 0.4 0.3 0.2 0.1 0.1 0.3 0.3 0.3 0.4 0.1 0.1 0.1 0.2 0.2
[1] 1gbl.a 0.3 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1
0
0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.1 0.1 0.3 0.3 0.3 0.4 0.1 0.2 0.1 0.2 0.2
[1] 1gbm.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.1
0
0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.4 0.3 0.3 0.2 0.1 0.4 0.3 0.4 0.4 0.2 0.1 0.1 0.1 0.2
[1] 1p01.a 0.4 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2
0
0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.4 0.3 0.2 0.1 0.1 0.4 0.3 0.3 0.4 0.1 0.1 0.2 0.2 0.1
[1] 1p02.a 0.4 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.1 0.2 0.2 0.1
0
0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.4 0.3 0.2 0.1 0.1 0.4 0.4 0.3 0.3 0.1 0.1 0.2 0.2 0.1
[1] 1p03.a 0.4 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.1 0.1
0
0.1 0.2 0.2 0.3 0.2 0.1 0.2 0.4 0.3 0.2 0.1 0.1 0.4 0.4 0.3 0.3 0.1 0.1 0.2 0.2 0.1
[1] 1p04.a 0.4 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1
0
0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.3 0.2 0.2 0.1 0.4 0.4 0.3 0.4 0.2 0.2 0.2 0.2 0.1
[1] 1p05.a 0.4 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0
0.3 0.3 0.2 0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2
[1] 1p06.a 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3
0
0.4 0.3 0.2 0.3 0.5 0.4 0.4 0.2 0.2 0.5 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.2
[1] 1p09.a 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4
0
0.2 0.4 0.4 0.3 0.2 0.4 0.2 0.2 0.2 0.3 0.4 0.4 0.2 0.2 0.2 0.3 0.3
[1] 1p10.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2
0
0.3 0.3 0.3 0.2 0.3 0.1 0.2 0.3 0.3 0.4 0.4 0.1 0.2 0.1 0.2 0.2
[1] 1p11.e 0.5 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.2 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.4 0.3
0
0.1 0.5 0.4 0.2 0.2 0.2 0.4 0.5 0.3 0.3 0.2 0.2 0.2 0.3 0.2
[1] 1p12.e 0.5 0.4 0.4 0.4 0.5 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.3 0.1
0
0.6 0.5 0.3 0.3 0.3 0.5 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3
[1] 1qq4.a 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.3 0.3 0.5 0.6
0
0.2 0.4 0.4 0.4 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
[1] 1tal.a 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.2 0.4 0.5 0.2
0
0.4 0.3 0.3 0.2 0.2 0.4 0.4 0.3 0.3 0.3 0.3 0.3
[1] 2h5d.a 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.4 0.4 0.3 0.2 0.3 0.4 0.4
0
0.3 0.2 0.4 0.4 0.4 0.3 0.3 0.2 0.3 0.3 0.2
[1] 2lpr.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.4 0.3 0.3
0
0.1 0.3 0.3 0.3 0.4 0.1 0.1 0.1 0.2 0.1
[1] 3lpr.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.2 0.1
0
0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.2 0.1
[1] 3m7t.a 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.2 0.4 0.3 0.3
0
0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.4
[1] 3m7u.a 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.3 0.3 0.5 0.5 0.3 0.2 0.4 0.3 0.3 0.3
0
0.5 0.5 0.3 0.4 0.3 0.3 0.4
[1] 3pro.a 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.5
0
0.5 0.3 0.3 0.3 0.4 0.3
[1] 3qgj.c 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.4 0.3 0.4 0.5 0.5
0
0.4 0.3 0.4 0.4 0.4
[1] 5lpr.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.1 0.2 0.3 0.4 0.3 0.3 0.1 0.1 0.3 0.3 0.3 0.4
0
0.1 0.1 0.2 0.1
[1] 6lpr.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.4 0.3 0.2 0.1 0.1 0.3 0.4 0.3 0.3 0.1
0
0.1 0.2 0.1
[1] 7lpr.a 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.1 0.2 0.3 0.4 0.3 0.3 0.1 0.1 0.3 0.3 0.3 0.4 0.1 0.1
0
0.1 0.1
[1] 8lpr.a 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.3 0.2 0.2 0.3 0.3 0.4 0.4 0.2 0.2 0.1
0
0.2
[1] 9lpr.a 0.4 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.3 0.2 0.1 0.1 0.4 0.4 0.3 0.4 0.1 0.1 0.1 0.2
0
[Binding site backbone RMSD matrix]

Site full-atom RMSD (median 0.3 Å)

Pockets (x) vs pockets (y) colored by RMSD of all site residue atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
1gba.a
1gbb.a
1gbc.a
1gbd.a
1gbe.a
1gbf.a
1gbh.a
1gbi.a
1gbj.a
1gbk.a
1gbl.a
1gbm.a
1p01.a
1p02.a
1p03.a
1p04.a
1p05.a
1p06.a
1p09.a
1p10.a
1p11.e
1p12.e
1qq4.a
1tal.a
2h5d.a
2lpr.a
3lpr.a
3m7t.a
3m7u.a
3pro.a
3qgj.c
5lpr.a
6lpr.a
7lpr.a
8lpr.a
9lpr.a
[1] 1gba.a
0
0.6 0.6 0.7 0.3 0.7 0.7 0.8 0.2 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9 1.0 0.7 0.9 0.9 0.9 0.8 0.3 0.7 0.6 0.7 0.5 0.8 0.9 1.3 0.6 0.7 0.7 0.7 0.7
[1] 1gbb.a 0.6
0
0.1 0.3 0.6 0.4 0.4 0.5 0.6 0.3 0.3 0.3 0.6 0.6 0.7 0.6 0.6 0.8 0.8 0.6 0.6 0.7 0.9 0.7 0.4 0.2 0.2 0.8 0.6 0.9 1.4 0.2 0.3 0.3 0.3 0.3
[1] 1gbc.a 0.6 0.1
0
0.4 0.6 0.4 0.4 0.5 0.6 0.4 0.3 0.3 0.6 0.7 0.7 0.6 0.6 0.8 0.9 0.6 0.6 0.7 0.9 0.7 0.4 0.2 0.2 0.8 0.6 0.9 1.4 0.2 0.3 0.3 0.3 0.3
[1] 1gbd.a 0.7 0.3 0.4
0
0.7 0.2 0.2 0.3 0.6 0.2 0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.7 0.7 0.7 1.0 0.7 0.5 0.4 0.4 0.8 0.7 0.9 1.4 0.4 0.3 0.3 0.3 0.3
[1] 1gbe.a 0.3 0.6 0.6 0.7
0
0.7 0.7 0.8 0.3 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9 1.0 0.7 0.9 0.9 0.9 0.8 0.4 0.7 0.7 0.7 0.6 0.9 0.9 1.3 0.7 0.7 0.7 0.7 0.7
[1] 1gbf.a 0.7 0.4 0.4 0.2 0.7
0
0.2 0.4 0.7 0.2 0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.7 0.7 0.7 1.0 0.8 0.4 0.4 0.3 0.9 0.7 1.0 1.4 0.4 0.3 0.3 0.3 0.3
[1] 1gbh.a 0.7 0.4 0.4 0.2 0.7 0.2
0
0.3 0.7 0.2 0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.7 0.7 0.7 1.0 0.8 0.5 0.4 0.4 0.9 0.7 1.0 1.4 0.4 0.3 0.3 0.4 0.3
[1] 1gbi.a 0.8 0.5 0.5 0.3 0.8 0.4 0.3
0
0.8 0.3 0.4 0.4 0.7 0.7 0.7 0.7 0.8 0.7 1.0 0.8 0.7 0.7 1.1 0.8 0.5 0.4 0.4 1.0 0.8 0.9 1.4 0.5 0.4 0.4 0.4 0.4
[1] 1gbj.a 0.2 0.6 0.6 0.6 0.3 0.7 0.7 0.8
0
0.7 0.6 0.7 0.9 0.9 0.9 0.9 0.9 1.0 0.7 0.8 0.8 0.9 0.7 0.3 0.7 0.6 0.6 0.5 0.8 0.9 1.3 0.6 0.7 0.7 0.7 0.7
[1] 1gbk.a 0.7 0.3 0.4 0.2 0.7 0.2 0.2 0.3 0.7
0
0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.9 0.7 0.7 0.7 1.0 0.7 0.4 0.3 0.3 0.9 0.7 0.9 1.3 0.3 0.3 0.3 0.3 0.3
[1] 1gbl.a 0.7 0.3 0.3 0.3 0.7 0.3 0.3 0.4 0.6 0.3
0
0.2 0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.7 0.6 0.7 1.0 0.7 0.4 0.3 0.3 0.9 0.7 0.9 1.4 0.3 0.2 0.1 0.2 0.2
[1] 1gbm.a 0.7 0.3 0.3 0.3 0.7 0.3 0.3 0.4 0.7 0.3 0.2
0
0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.7 0.7 0.7 1.0 0.7 0.4 0.3 0.3 0.9 0.7 0.9 1.4 0.3 0.2 0.2 0.2 0.2
[1] 1p01.a 0.9 0.6 0.6 0.7 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7
0
0.2 0.1 0.2 0.2 0.5 0.7 0.4 0.8 0.8 0.9 0.9 0.7 0.6 0.6 0.9 0.7 1.1 1.2 0.7 0.8 0.8 0.8 0.7
[1] 1p02.a 0.9 0.6 0.7 0.7 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7 0.2
0
0.2 0.3 0.3 0.4 0.7 0.4 0.8 0.9 0.9 0.9 0.7 0.6 0.6 0.9 0.8 1.1 1.2 0.6 0.7 0.7 0.8 0.6
[1] 1p03.a 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7 0.1 0.2
0
0.2 0.3 0.5 0.7 0.4 0.8 0.8 0.9 0.9 0.7 0.6 0.6 0.9 0.7 1.1 1.2 0.7 0.7 0.8 0.8 0.7
[1] 1p04.a 0.9 0.6 0.6 0.7 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7 0.2 0.3 0.2
0
0.2 0.5 0.8 0.4 0.8 0.8 0.9 0.9 0.7 0.6 0.6 0.9 0.7 1.1 1.2 0.7 0.8 0.8 0.8 0.7
[1] 1p05.a 0.9 0.6 0.6 0.7 0.9 0.7 0.7 0.8 0.9 0.7 0.7 0.7 0.2 0.3 0.3 0.2
0
0.5 0.7 0.4 0.8 0.9 0.9 0.9 0.7 0.6 0.6 0.9 0.7 1.1 1.2 0.7 0.8 0.8 0.8 0.7
[1] 1p06.a 1.0 0.8 0.8 0.8 1.0 0.8 0.8 0.7 1.0 0.7 0.8 0.8 0.5 0.4 0.5 0.5 0.5
0
0.8 0.6 0.9 0.9 1.0 1.0 0.8 0.7 0.7 1.0 0.8 1.1 1.3 0.8 0.8 0.8 0.9 0.8
[1] 1p09.a 0.7 0.8 0.9 0.9 0.7 0.9 0.9 1.0 0.7 0.9 0.9 0.9 0.7 0.7 0.7 0.8 0.7 0.8
0
0.7 1.1 1.1 0.6 0.7 1.0 0.9 0.9 0.8 0.9 1.1 1.3 0.9 0.9 0.9 1.0 0.9
[1] 1p10.a 0.9 0.6 0.6 0.7 0.9 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.4 0.4 0.4 0.4 0.4 0.6 0.7
0
0.9 0.9 0.9 0.9 0.8 0.6 0.6 1.0 0.8 1.1 1.3 0.6 0.7 0.7 0.7 0.7
[1] 1p11.e 0.9 0.6 0.6 0.7 0.9 0.7 0.7 0.7 0.8 0.7 0.6 0.7 0.8 0.8 0.8 0.8 0.8 0.9 1.1 0.9
0
0.1 1.2 0.9 0.6 0.6 0.6 1.0 0.9 1.1 1.2 0.7 0.7 0.8 0.8 0.6
[1] 1p12.e 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7 0.9 0.7 0.7 0.7 0.8 0.9 0.8 0.8 0.9 0.9 1.1 0.9 0.1
0
1.2 1.0 0.6 0.6 0.6 1.1 0.9 1.1 1.2 0.7 0.7 0.8 0.8 0.7
[1] 1qq4.a 0.8 0.9 0.9 1.0 0.8 1.0 1.0 1.1 0.7 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 1.0 0.6 0.9 1.2 1.2
0
0.7 1.0 1.0 1.0 0.7 1.0 1.1 1.4 1.0 1.1 1.1 1.1 1.0
[1] 1tal.a 0.3 0.7 0.7 0.7 0.4 0.8 0.8 0.8 0.3 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9 1.0 0.7 0.9 0.9 1.0 0.7
0
0.7 0.7 0.7 0.5 0.8 0.9 1.4 0.7 0.8 0.8 0.8 0.8
[1] 2h5d.a 0.7 0.4 0.4 0.5 0.7 0.4 0.5 0.5 0.7 0.4 0.4 0.4 0.7 0.7 0.7 0.7 0.7 0.8 1.0 0.8 0.6 0.6 1.0 0.7
0
0.4 0.3 0.9 0.7 1.0 1.4 0.5 0.5 0.5 0.6 0.4
[1] 2lpr.a 0.6 0.2 0.2 0.4 0.7 0.4 0.4 0.4 0.6 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.7 0.9 0.6 0.6 0.6 1.0 0.7 0.4
0
0.1 0.8 0.7 0.9 1.4 0.1 0.3 0.3 0.3 0.2
[1] 3lpr.a 0.7 0.2 0.2 0.4 0.7 0.3 0.4 0.4 0.6 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.7 0.9 0.6 0.6 0.6 1.0 0.7 0.3 0.1
0
0.8 0.7 0.9 1.3 0.2 0.2 0.3 0.3 0.2
[1] 3m7t.a 0.5 0.8 0.8 0.8 0.6 0.9 0.9 1.0 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 0.8 1.0 1.0 1.1 0.7 0.5 0.9 0.8 0.8
0
0.8 0.9 1.3 0.9 0.9 0.9 0.9 0.9
[1] 3m7u.a 0.8 0.6 0.6 0.7 0.9 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.9 0.8 0.9 0.9 1.0 0.8 0.7 0.7 0.7 0.8
0
1.1 1.5 0.7 0.8 0.8 0.8 0.7
[1] 3pro.a 0.9 0.9 0.9 0.9 0.9 1.0 1.0 0.9 0.9 0.9 0.9 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.9 1.0 0.9 0.9 0.9 1.1
0
1.3 0.9 0.9 1.0 1.0 0.9
[1] 3qgj.c 1.3 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.3 1.3 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.2 1.2 1.4 1.4 1.4 1.4 1.3 1.3 1.5 1.3
0
1.4 1.4 1.4 1.4 1.4
[1] 5lpr.a 0.6 0.2 0.2 0.4 0.7 0.4 0.4 0.5 0.6 0.3 0.3 0.3 0.7 0.6 0.7 0.7 0.7 0.8 0.9 0.6 0.7 0.7 1.0 0.7 0.5 0.1 0.2 0.9 0.7 0.9 1.4
0
0.3 0.3 0.4 0.3
[1] 6lpr.a 0.7 0.3 0.3 0.3 0.7 0.3 0.3 0.4 0.7 0.3 0.2 0.2 0.8 0.7 0.7 0.8 0.8 0.8 0.9 0.7 0.7 0.7 1.1 0.8 0.5 0.3 0.2 0.9 0.8 0.9 1.4 0.3
0
0.3 0.2 0.3
[1] 7lpr.a 0.7 0.3 0.3 0.3 0.7 0.3 0.3 0.4 0.7 0.3 0.1 0.2 0.8 0.7 0.8 0.8 0.8 0.8 0.9 0.7 0.8 0.8 1.1 0.8 0.5 0.3 0.3 0.9 0.8 1.0 1.4 0.3 0.3
0
0.3 0.4
[1] 8lpr.a 0.7 0.3 0.3 0.3 0.7 0.3 0.4 0.4 0.7 0.3 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.9 1.0 0.7 0.8 0.8 1.1 0.8 0.6 0.3 0.3 0.9 0.8 1.0 1.4 0.4 0.2 0.3
0
0.4
[1] 9lpr.a 0.7 0.3 0.3 0.3 0.7 0.3 0.3 0.4 0.7 0.3 0.2 0.2 0.7 0.6 0.7 0.7 0.7 0.8 0.9 0.7 0.6 0.7 1.0 0.8 0.4 0.2 0.2 0.9 0.7 0.9 1.4 0.3 0.3 0.4 0.4
0
[Binding site full-atom RMSD matrix]







[show 3D visualization]

[ENTRY 2D visualization]

L C X E | Background Color: | Anaglyph Stereo:

loading...