If you see this message after the page is completely loaded, then JavaScript is not supported or disabled in your browser. Please consider enabling JavaScript for this site.

FGFR1_HUMAN_456_766

Fibroblast growth factor receptor 1 [Protein kinase superfamily. Tyr protein kinase family. Fibroblast growth factor receptor subfamily]

Composition of the binding site

Protein chains monomer [domain annotation]
A1 (FGFR1_HUMAN):D: Protein kinase (482, 484:490, 492, 494, 512:514, 517, 528, 531, 534, 535, 538, 544, 545, 559, 561:568, 571, 614, 619:623, 627, 628, 630, 639:646, 659)482, 484:490, 492, 494, 512:514, 517, 528, 531, 534, 535, 538, 544, 545, 559, 561:568, 571, 614, 619:623, 627, 628, 630, 639:646, 659

Full PDB list

1agw, 1fgi, 1fgk, 2fgi, 3c4f, 3gqi, 3gql, 3js2, 3kxx, 3ky2, 3rhx, 3tt0, 4f63, 4f64, 4f65, 4nk9, 4nka, 4nks, 4rwi, 4rwj, 4rwk, 4rwl, 4uwb, 4uwc, 4uwy, 4v01, 4v04, 4v05, 4wun, 4zsa, 5a46, 5a4c, 5am6, 5am7, 5b7v, 5ew8, 5flf, 5uq0, 5ur1, 5vnd (redundant Pocketome entry)

Pocket contact map

[download in TSV format]
   
PDB.ch
   
ligand
A1
K
4
8
2
L
4
8
4
G
4
8
5
E
4
8
6
G
4
8
7
C
4
8
8
F
4
8
9
G
4
9
0
V
4
9
2
L
4
9
4
A
5
1
2
V
5
1
3
K
5
1
4
E
5
3
1
M
5
3
4
M
5
3
5
I
5
4
5
V
5
5
9
V
5
6
1
E
5
6
2
Y
5
6
3
A
5
6
4
S
5
6
5
K
5
6
6
G
5
6
7
N
5
6
8
E
5
7
1
L
6
1
4
C
6
1
9
I
6
2
0
H
6
2
1
R
6
2
2
R
6
2
7
N
6
2
8
L
6
3
0
I
6
3
9
A
6
4
0
D
6
4
1
F
6
4
2
L
6
4
4
[1]1agw.a su225 . . . - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]1agw.b su225 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]1fgi.a su122 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]2fgi.a pd138 . . . - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]2fgi.b pd138 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3c4f.b c4f18 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3gql.a gql27 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3js2.a vm114 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3ky2.a none . . . . . - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3rhx.b 3rh21 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3tt0.a 07j38 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4f63.a 0s723 . . . - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4f63.b 0s723 . . . . . A - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4f64.a 0s826 . . . - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4f64.b 0s826 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4f65.a 0s929 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
[1]4nk9.a 2k532 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
[1]4nka.a 2k732 . . . . - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
[1]4nka.b 2k732 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
[1]4nks.a 2m228 . . . - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4nks.b 2m228 . . . . . A - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4rwi.a none . . . . . A . . . . . . . . . . . . M . . . . . . . . . . . . . . . . . . . . .
[1]4rwi.b none . . . . . - - . . . . . . . . . . . M . . . . . . . . . . . . . . . . . . . . .
[1]4rwk.a 66t34 . . . . . A . . . . . . . . . . . . M . . . . . . . . . . . . . . . . . . . . .
[1]4rwl.b 3zc33 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4uwb.a jvt25 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4uwc.a 4y024 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4v01.b 0li39 . . . . . - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
[1]4v04.b 0li39 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
[1]4wun.a 66t34 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]4zsa.a 4ut34 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5a46.a 38o29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5a4c.a xoj37 . . . . - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5a4c.b xoj37 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5am6.b 38o29 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5am7.a 38o29 . . . . - - - . . . . . . . . . . . M . . . . . . . . . . . . . . . . . . . . .
[1]5b7v.b lwj27 . . . . - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5ew8.a 5sf33 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5uq0.a wp114 . . . . - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5ur1.a yy939 . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5ur1.b yy940 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]5vnd.b 9es43 . . . . . A . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . .
[2]3gqi.a acp,mg32 . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[2]5flf.a none . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Site contact map

[download in TSV format]
   
PDB.ch
A1
K
4
8
2
L
4
8
4
G
4
8
5
E
4
8
6
G
4
8
7
C
4
8
8
F
4
8
9
G
4
9
0
V
4
9
2
L
4
9
4
A
5
1
2
V
5
1
3
K
5
1
4
K
5
1
7
L
5
2
8
E
5
3
1
M
5
3
4
M
5
3
5
I
5
3
8
I
5
4
4
I
5
4
5
V
5
5
9
V
5
6
1
E
5
6
2
Y
5
6
3
A
5
6
4
S
5
6
5
K
5
6
6
G
5
6
7
N
5
6
8
E
5
7
1
L
6
1
4
C
6
1
9
I
6
2
0
H
6
2
1
R
6
2
2
D
6
2
3
R
6
2
7
N
6
2
8
L
6
3
0
I
6
3
9
A
6
4
0
D
6
4
1
F
6
4
2
G
6
4
3
L
6
4
4
A
6
4
5
R
6
4
6
N
6
5
9
[1]1agw.a . . . - - - - - . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]1agw.b . . . . . A . . . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - -
[1]1fgi.a . . . . . A * * . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]2fgi.a . . . - - - - - . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - .
[1]2fgi.b . . . . . A * . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - -
[1]3c4f.b . . * . . A * . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . * .
[1]3gql.a . . . . * A . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]3js2.a . * . . . A * * . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]3ky2.a . . . . . - - . . . . . * . . * . . . . . . . . * . . . . . . . . . . * . . . . . . . * * . . . .
[1]3rhx.b . . . . . A * . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - .
[1]3tt0.a . . . . * A . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]4f63.a . . . - - - - - . . . . * . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]4f63.b . . . . . A - . . . . . * . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - -
[1]4f64.a . . . - - - - - . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]4f64.b . . . . . A . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - -
[1]4f65.a . . . * * A . . . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * - - - - .
[1]4nk9.a . . . * * A . . . . . . * . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * - - - .
[1]4nka.a . . . . - - - - . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * - - - .
[1]4nka.b . . . . . A . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * - - - - .
[1]4nks.a . . . - - - - - . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . - - .
[1]4nks.b . . . . . A - . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - -
[1]4rwi.a . . . . * A . . . . . . . . . * . . . . . . M . * . . . . . . . . . . * . . . . . . . * * . . . .
[1]4rwi.b . . . . * - - . . . . . . . . * . . . . . . M . * . . . . . . . . . . . . . . . . . . * * . . - -
[1]4rwk.a . . . . * A * . . . . . . . . * . . . . . . M . * . . . . . . . . . . * . . . . . . . * * . . . .
[1]4rwl.b . . . . . A . . . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . - - .
[1]4uwb.a . . . . . A * . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]4uwc.a . . . . . A * * . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]4v01.b . . . . * - - . . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * - - - - .
[1]4v04.b . . . . . A . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * - - - - .
[1]4wun.a . . * . . A * . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . - - -
[1]4zsa.a . . * . . A * * . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]5a46.a . . . . . . . . . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]5a4c.a . . . . - - * . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . - - .
[1]5a4c.b . . . . . A . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . - .
[1]5am6.b . . . . * A . . . . . . * . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . -
[1]5am7.a . . . . - - - . . . . . * . . * . . . . . . M . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]5b7v.b . . . . - - - . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . * * * . . . -
[1]5ew8.a . . . . . A . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . . . .
[1]5uq0.a . . . . - - . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . - - -
[1]5ur1.a . . . . * - . . . . . . . . . * . . . . . . . . * . . . . . . . . . . . . . . . . . . * * . - - -
[1]5ur1.b . . . * * A . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . * * * - - -
[1]5vnd.b . . . . * A . . . . . . . . . * . . . . . . . . C . . . . . . . . . . . . . . . . . . * * . . . .
[2]3gqi.a . . . . . A . . . . . . . . . * . . . . . . . . * . . . . * . . . . * . . . . . . * . * . . * . .
[2]5flf.a . . . . . A * . . . . . * . . * . . . . . . . . * . . . . . . . . . * . . . . . . . * * . . * . .

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X X X X X  clash
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Pocket-ligand steric compatibility

Ligands (x) vs pockets (y) colored by number of steric clashes

zoom: [−] [+]; [view as image]; [download as text]

pocketligand
≥10
9
8
7
6
5
4
3
2
1
0
1agw.a:su2
1agw.b:su2
1fgi.a:su1
2fgi.a:pd1
2fgi.b:pd1
3c4f.b:c4f
3gql.a:gql
3js2.a:vm1
3ky2.a is apo
3rhx.b:3rh
3tt0.a:07j
4f63.a:0s7
4f63.b:0s7
4f64.a:0s8
4f64.b:0s8
4f65.a:0s9
4nk9.a:2k5
4nka.a:2k7
4nka.b:2k7
4nks.a:2m2
4nks.b:2m2
4rwi.a is apo
4rwi.b is apo
4rwk.a:66t
4rwl.b:3zc
4uwb.a:jvt
4uwc.a:4y0
4v01.b:0li
4v04.b:0li
4wun.a:66t
4zsa.a:4ut
5a46.a:38o
5a4c.a:xoj
5a4c.b:xoj
5am6.b:38o
5am7.a:38o
5b7v.b:lwj
5ew8.a:5sf
5uq0.a:wp1
5ur1.a:yy9
5ur1.b:yy9
5vnd.b:9es
3gqi.a:acp,mg
5flf.a is apo
[1] 1agw.a
0.1
0 0.2 1.4 1.4 0.5 0.9 0.1 - 0.4 1.3 0.2 0.1 0.6 0.5 1.0 0.8 1.7 2.1 1.4 1.4 - - 0.3 1.7 0.1 0.1 8.4 8.2 0.8 1.2 0.1 0.9 1.4 0.2 0.2 0.7 0.9 0 1.3 1.4 4.2 0 -
[1] 1agw.b 0.1
0
0.2 1.6 1.5 0.7 1.5 0.1 - 0.6 1.3 0.4 0.2 0.6 0.8 1.3 0.7 1.8 2.2 1.3 1.4 - - 0.2 1.4 0.1 0.1 8.3 8.5 1.1 1.6 0.1 1.2 1.4 0.2 0.1 0.9 0.9 0.2 1.1 1.2 4.4 0.4 -
[1] 1fgi.a 0.1 0.1
0
3.6 4.1 0.7 1.5 0 - 1.6 1.6 3.1 4.9 4.3 4.2 4.6 4.3 4.4 5.3 4.4 4.6 - - 6.1 1.7 0 0.1 9.1 8.9 0.8 1.0 0.2 3.7 4.1 0.5 0.4 0.9 5.3 0.4 2.6 3.0 3.9 5.5 -
[1] 2fgi.a 0.4 0.2 0.2
0.2
0.1 0 0 0 - 0 0.2 0.4 0.2 0.1 0.1 0.3 0.1 1.0 1.2 0.4 0.3 - - 0 0.3 0.2 0.2 7.4 6.9 0.1 0.2 0.2 0.3 0.1 0.3 0.4 0.1 0.2 0 0.3 0.3 2.5 0 -
[1] 2fgi.b 0.2 0 0.2 0.1
0
0 0 0.1 - 0 0.2 0.3 0.2 0.1 0.1 0.4 0 1.2 1.3 0.3 0.3 - - 0.3 0.3 0.1 0.1 7.0 7.3 0 0.1 0.2 0 0 0.3 0.2 0.1 0.1 0 0.2 0.3 3.5 2.7 -
[1] 3c4f.b 0.3 0.2 0.8 4.1 4.1
0
1.0 0.1 - 1.7 0.5 4.4 5.8 5.0 5.1 4.7 4.7 5.5 5.8 4.0 4.5 - - 5.0 1.3 0.1 0 8.1 7.8 0.1 0.3 0.6 4.0 4.3 1.0 0.6 0.3 4.0 0.3 3.4 4.1 2.8 6.1 -
[1] 3gql.a 0 0 0.2 0.4 0.6 0
0
0 - 0 0.2 0.3 0.2 0.1 0.1 0.2 0.2 0.9 1.1 0.3 0.2 - - 0.3 0.1 0.1 0.1 7.8 7.1 0.1 0.2 0.1 0.3 0.4 0.1 0.2 0.1 0.2 0 0.2 0.2 2.6 4.3 -
[1] 3js2.a 0.1 0 0.2 3.5 3.2 0.2 1.2
0.1
- 1.2 0.8 3.4 4.5 4.0 4.1 3.6 3.6 4.7 5.3 3.6 4.1 - - 4.7 1.8 0.1 0.2 8.4 8.0 0.6 0.7 0.3 3.4 3.5 0.6 0.3 0.4 4.8 0.3 1.9 2.6 3.7 7.3 -
[1] 3ky2.a 0.1 0 0.2 1.8 1.3 0.5 0.6 0
-
0.5 1.1 0.3 0 0.6 0.4 0.8 1.1 1.5 2.1 1.2 1.3 - - 0.2 1.8 0 0.1 9.8 9.7 0.8 1.2 0.1 1.5 1.4 0.1 0.3 0.9 0.8 0 1.2 1.3 4.5 0.6 -
[1] 3rhx.b 0.2 0 0.2 0.5 0.8 0 0.1 0 -
0
0.2 0.7 0.2 0.2 0.2 0.3 0.4 1.3 1.6 0.3 0.5 - - 0.9 0.7 0.1 0.1 7.7 7.6 0.1 0.1 0.1 0.5 0.5 0.2 0.2 0.2 0.1 0 0.6 0.6 3.0 4.9 -
[1] 3tt0.a 0.1 0.1 0.2 0.3 0.4 0 0 0 - 0
0
0.3 0.3 0 0 0.2 0.1 0.6 0.9 0.1 0.1 - - 0.4 0.2 0 0.1 8.3 7.9 0 0 0 0.3 0.3 0.1 0.3 0.1 0.1 0 0.2 0.2 3.4 2.3 -
[1] 4f63.a 0.1 0.1 0 1.9 1.8 0.7 1.0 0 - 0.7 1.4
0
0 0.7 0.6 1.2 0.9 1.6 1.4 2.0 1.6 - - 0.1 1.7 0 0.1 8.6 8.3 1.6 1.6 0 1.8 1.8 0.1 0.4 0.8 1.7 0 1.5 1.5 4.3 0 -
[1] 4f63.b 0.1 0.1 0 1.1 1.1 0.4 0.9 0.1 - 0.4 1.0 0
0.1
0.4 0.4 0.7 0.4 1.0 0.9 1.3 1.3 - - 0.1 1.2 0 0.1 8.0 8.3 0.9 0.8 0 0.9 0.9 0 0.2 0.4 0.9 0 0.9 0.9 4.2 0.8 -
[1] 4f64.a 0.1 0.1 0.1 0.2 0.1 0 0.2 0 - 0 0.3 0.1 0
0
0 0.1 0.1 1.4 1.3 0.2 0.2 - - 0.1 0.4 0 0.1 7.9 7.2 0.1 0 0 0.2 0.2 0.1 0.3 0.2 0.2 0 0.3 0.4 2.7 0 -
[1] 4f64.b 0.1 0.1 0 0.2 0.3 0 0.2 0.1 - 0 0.2 0.1 0.1 0
0
0 0 1.0 1.1 0.2 0.2 - - 0.2 0.3 0 0.1 7.3 7.4 0 0.1 0 0.2 0.2 0.1 0.2 0 0 0 0.4 0.3 3.0 0.8 -
[1] 4f65.a 0.1 0 0 2.5 2.7 0 1.0 0 - 0.2 0.5 0.5 0.1 0 0
0
0 3.1 2.5 0.3 0.1 - - 1.4 0.5 0 0.2 6.5 6.7 0 0.6 0 2.7 2.4 0 0.2 0.3 0.2 0 0.5 0.5 2.6 5.1 -
[1] 4nk9.a 0.2 0.1 0.1 2.1 2.2 0.1 0.5 0 - 0.1 0.4 0.5 0.2 0.1 0.1 0.2
0
2.4 2.4 0.3 0.2 - - 1.4 0.4 0.1 0.3 8.2 7.9 0 0.7 0.1 2.4 1.9 0.2 0.3 0.2 0.2 0 0.3 0.4 3.5 4.8 -
[1] 4nka.a 0.1 0 0 0.1 0.3 0 0.3 0 - 0 0.3 0.1 0 0 0 0.1 0
0
0 0.2 0.1 - - 0.1 0 0 0.2 6.9 6.4 0 0 0 0.5 0.5 0.1 0.2 0.1 0.1 0 0.3 0.2 3.1 0.1 -
[1] 4nka.b 0.1 0 0 0.2 0.3 0 0.2 0 - 0 0.5 0 0 0 0 0.1 0 0.1
0
0.2 0.2 - - 0.1 0 0 0.1 6.0 6.0 0.1 0 0 0.2 0.2 0 0.1 0 0.1 0.1 0.4 0.6 3.1 0.6 -
[1] 4nks.a 0.1 0.1 0.1 0 0.1 0.1 0.1 0 - 0 0.2 0 0 0 0 0 0.2 1.8 1.9
0
0 - - 0 0.5 0 0.1 7.8 7.5 0.1 0.2 0.1 0.1 0 0.2 0.3 0.2 0.2 0 0.3 0.3 2.7 0 -
[1] 4nks.b 0.1 0.1 0.1 0.2 0.2 0 0.3 0 - 0 0.2 0.1 0 0 0 0.1 0 1.4 1.4 0.1
0
- - 0.2 0.1 0 0.1 7.4 7.0 0 0.3 0 0.2 0.2 0.1 0.3 0.2 0.1 0 0.4 0.4 2.8 0.9 -
[1] 4rwi.a 0.1 0.1 0.1 1.4 1.3 0.6 0.4 0 - 0.7 1.2 0.3 0.1 0.7 0.6 0.9 1.4 1.7 2.1 1.4 1.3
-
- 0.1 1.9 0 0.2 10 10 1.3 1.3 0.1 1.6 1.5 0.1 0.1 0.7 1.1 0 1.2 1.3 4.2 1.2 -
[1] 4rwi.b 0.1 0.2 0.2 1.1 1.1 0.4 0.4 0.1 - 0.6 1.2 0.3 0.4 0.7 0.5 1.1 1.0 1.4 2.1 1.3 1.1 -
-
0.2 1.7 0.1 0.2 8.9 8.2 1.0 1.0 0.1 1.0 1.2 0.2 0.2 0.6 1.1 0 1.3 1.3 3.9 1.2 -
[1] 4rwk.a 0.1 0.1 0.2 1.6 1.5 0.6 0.7 0 - 0.6 1.6 0.3 0.1 0.5 0.5 0.9 1.2 1.5 1.8 1.1 1.1 - -
0
2.0 0 0.2 9.8 10 1.4 1.0 0.1 1.4 1.3 0.2 0.3 1.0 1.3 0 1.9 1.5 4.3 3.4 -
[1] 4rwl.b 0.1 0 0.2 0.1 0 0 0.3 0.1 - 0 0.1 0.4 0.3 0.1 0.1 0.2 0.2 1.8 1.6 0.1 0 - - 0.2
0
0.1 0 7.9 7.9 0.1 0.8 0.1 0 0 0.2 0.2 0 0 0 0.3 0.2 3.3 1.4 -
[1] 4uwb.a 0 0 0.1 0.3 0.3 0 0.4 0 - 0 0.3 0.1 0 0 0 0.2 0.1 1.8 1.9 0.4 0.4 - - 0.1 0.6
0
0 7.8 7.2 0.1 0.3 0 0.4 0.4 0.1 0.2 0.2 0.2 0 0.4 0.3 2.7 1.8 -
[1] 4uwc.a 0.1 0.1 0.3 3.9 4.0 0.5 1.3 0.1 - 1.3 1.1 3.7 5.0 4.0 4.1 4.4 4.0 6.3 6.8 4.9 4.4 - - 6.1 1.3 0.1
0
8.5 8.2 0.5 0.8 0.3 3.7 4.8 1.0 0.6 0.6 4.7 0.6 2.5 2.1 3.9 6.1 -
[1] 4v01.b 0.7 1.0 0.7 1.8 1.8 0.5 1.7 0.9 - 1.6 0.9 2.9 3.4 3.1 3.1 3.1 3.4 4.3 4.5 3.3 3.3 - - 4.3 0.6 0.7 0.1
0.1
0 0.4 1.0 1.1 1.9 2.1 1.7 1.4 0.4 4.1 1.4 1.8 1.6 3.4 4.3 -
[1] 4v04.b 0.6 0.5 0.6 1.0 1.0 0.3 0.9 0.6 - 1.2 0.3 2.7 3.3 3.0 3.2 3.3 3.1 3.6 4.0 3.4 2.8 - - 4.0 0.7 0.4 0 0.4
0
0.1 0.6 0.5 1.3 1.2 1.3 1.0 0.2 3.8 1.1 1.3 1.0 3.3 4.4 -
[1] 4wun.a 0.4 0.5 0.3 3.6 3.5 0 1.0 0.3 - 2.1 0.8 4.8 5.9 4.9 4.6 4.3 4.4 5.8 5.8 4.2 4.3 - - 6.1 0.4 0.3 0.1 7.3 7.1
0
0.3 1.1 4.0 4.4 1.7 1.2 0.5 4.4 1.0 2.6 3.0 3.5 6.2 -
[1] 4zsa.a 0.2 0.1 0.4 3.9 3.9 0 1.2 0 - 0.9 0.2 3.3 4.6 3.9 3.9 3.0 3.7 4.0 4.6 3.0 3.3 - - 4.8 1.9 0.1 0.1 7.4 7.5 0.1
0
0.1 4.2 4.7 0.5 0.3 0.1 3.6 0.3 3.3 3.2 3.0 7.8 -
[1] 5a46.a 0 0 0 0.5 0.6 0.1 0.5 0 - 0.1 0.6 0.3 0 0.1 0.2 0.5 0.1 2.5 2.5 1.0 0.8 - - 0.3 1.0 0 0 7.9 7.9 0.4 1.0
0
0.8 0.8 0 0.1 0.3 0.4 0.1 0.3 0.4 3.8 0.8 -
[1] 5a4c.a 0.1 0.1 0.2 0 0 0 0 0 - 0 0.1 0.3 0.1 0.1 0.1 0.3 0 1.5 1.5 0.3 0.2 - - 0.1 0.1 0.1 0.1 7.2 6.7 0 0.1 0.1
0
0 0.2 0.4 0.1 0.1 0 0.1 0.2 3.4 2.0 -
[1] 5a4c.b 0.2 0 0.2 0 0 0 0.1 0 - 0 0.1 0.3 0.1 0.1 0.1 0.3 0 0.7 1.2 0.3 0.2 - - 0.1 0.1 0.1 0.1 6.8 6.5 0 0.1 0.1 0
0
0.2 0.3 0.1 0 0 0.1 0.1 3.4 0.6 -
[1] 5am6.b 0 0 0.1 2.1 2.1 0.6 1.5 0 - 0.5 1.3 0.8 0.5 0.7 0.7 1.2 1.0 2.3 2.4 1.3 1.4 - - 0.3 1.8 0.1 0.1 8.6 7.7 0.9 1.9 0 1.3 1.5
0
0.1 0.7 0.7 0.1 1.2 1.4 4.1 1.6 -
[1] 5am7.a 0 0 0 1.5 1.6 0.4 0.6 0 - 0.6 1.2 0.2 0 0.7 0.4 1.0 0.9 2.0 2.0 1.3 1.3 - - 0.1 2.3 0 0.1 9.0 8.4 1.0 1.4 0 1.2 1.2 0
0.1
0.5 0.9 0 1.0 1.2 3.2 0.1 -
[1] 5b7v.b 0.1 0 0.1 0.4 0.4 0 0 0 - 0 0.3 0.5 0.7 0 0 0.2 0.3 1.4 1.6 0.2 0.3 - - 0.7 0.3 0 0.1 8.6 7.7 0.1 0.7 0 0.3 0.3 0 0.1
0
0.2 0 0.2 0.4 3.8 0.3 -
[1] 5ew8.a 0.1 0 0 0.6 0.7 0 0.2 0 - 0 0.2 0.3 0.2 0.1 0 0.1 0.3 0.8 0.9 0.2 0.1 - - 0.2 0.7 0 0.1 7.0 6.6 0.1 0.3 0 0.6 0.6 0.1 0.2 0.1
0
0 0.3 0.2 2.2 0.6 -
[1] 5uq0.a 0.2 0.1 0.2 0.4 0.3 0.1 0 0.1 - 0 0.5 0.3 0.3 0.2 0.2 0.3 0.2 1.1 1.6 0.2 0.4 - - 0.1 0.7 0.1 0.2 7.4 7.3 0.1 0.2 0.2 0.4 0.4 0.3 0.4 0.3 0.2
0
0.5 0.6 2.3 1.4 -
[1] 5ur1.a 0.1 0 0.2 0.8 1.2 0 0.1 0 - 0 0 0.4 0.2 0 0.1 0.1 0 0.9 1.4 0.1 0.1 - - 1.3 0.1 0 0.2 7.2 6.8 0 0.1 0.1 1.2 0.9 0.1 0.3 0.1 0.1 0
0
0 2.7 1.8 -
[1] 5ur1.b 0.2 0.1 0.3 0.4 0.6 0 0.1 0.1 - 0 0 0.3 0.3 0 0.1 0.1 0 1.1 1.3 0.1 0.2 - - 0.5 0 0 0.2 9.4 8.9 0 0.3 0.2 0.6 0.4 0.3 0.3 0.1 0.3 0 0.1
0
3.3 3.0 -
[1] 5vnd.b 0.1 0 0.1 0 0 0 0 0.1 - 0 0 0.2 0.4 0 0.1 0.2 0 0.7 1.2 0.3 0.2 - - 0.2 0.1 0 0.2 7.0 7.3 0.1 0.2 0.1 0 0 0.1 0.3 0.1 0.1 0.1 0.1 0.1
0.6
1.2 -
[2] 3gqi.a 0.1 0.1 1.0 1.2 1.3 0.4 0.8 0.1 - 0.2 1.1 0.5 0.5 0.4 0.4 0.3 1.2 1.9 2.0 0.7 0.5 - - 0.3 2.3 0.1 0.3 11 10 0.7 0.4 0.2 1.3 1.3 0.2 0.4 1.2 1.1 0.1 1.6 1.5 4.2
0.1
-
[2] 5flf.a 0.2 0.1 0.6 2.4 2.4 1.1 1.6 0.2 - 1.2 2.3 0.6 0.9 1.1 1.0 1.4 2.1 3.3 3.7 1.6 1.7 - - 0.8 3.4 0.1 0.5 12 12 2.2 2.4 0.2 2.2 2.4 0.3 0.4 2.6 1.7 0.4 2.8 2.6 5.4 2.8
-
[Pocket-ligand steric clashes matrix]

Pocket clash dissimilarity (2 clusters)

Pockets (x) vs pockets (y) colored by ligand clash profile difference

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥1.
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
1agw.a
1agw.b
1fgi.a
2fgi.a
2fgi.b
3c4f.b
3gql.a
3js2.a
3ky2.a
3rhx.b
3tt0.a
4f63.a
4f63.b
4f64.a
4f64.b
4f65.a
4nk9.a
4nka.a
4nka.b
4nks.a
4nks.b
4rwi.a
4rwi.b
4rwk.a
4rwl.b
4uwb.a
4uwc.a
4v01.b
4v04.b
4wun.a
4zsa.a
5a46.a
5a4c.a
5a4c.b
5am6.b
5am7.a
5b7v.b
5ew8.a
5uq0.a
5ur1.a
5ur1.b
5vnd.b
3gqi.a
5flf.a
[1] 1agw.a
0
.04 .19 .07 .12 .25 .16 .20 .08 .17 .16 .04 .07 .05 .08 .20 .18 .10 .14 .06 .08 .11 .10 .17 .12 .06 .20 .13 .14 .25 .26 .05 .12 .10 .07 .06 .10 .09 .09 .14 .19 .12 .25 .23
[1] 1agw.b .04
0
.20 .08 .10 .25 .17 .20 .08 .16 .14 .05 .04 .07 .05 .19 .15 .09 .11 .08 .06 .13 .10 .18 .08 .09 .19 .13 .11 .25 .25 .06 .10 .07 .06 .09 .09 .08 .11 .11 .16 .12 .26 .24
[1] 1fgi.a .19 .20
0
.22 .18 .13 .27 .09 .23 .14 .27 .18 .20 .20 .22 .28 .26 .25 .28 .22 .22 .29 .28 .22 .23 .17 .08 .29 .29 .08 .12 .21 .19 .25 .21 .20 .26 .21 .18 .26 .30 .24 .36 .30
[1] 2fgi.a .07 .08 .22
0
.11 .22 .13 .22 .12 .19 .13 .07 .09 .04 .08 .22 .20 .08 .11 .06 .09 .14 .12 .18 .11 .10 .23 .13 .12 .23 .25 .11 .08 .07 .11 .10 .10 .07 .09 .09 .17 .09 .23 .25
[1] 2fgi.b .12 .10 .18 .11
0
.20 .17 .16 .13 .10 .13 .13 .09 .10 .08 .24 .19 .12 .14 .10 .08 .15 .13 .13 .10 .07 .16 .18 .14 .19 .19 .11 .04 .08 .13 .14 .13 .11 .10 .12 .16 .13 .30 .26
[1] 3c4f.b .25 .25 .13 .22 .20
0
.27 .15 .28 .14 .27 .24 .25 .22 .23 .33 .32 .24 .26 .25 .24 .31 .28 .25 .27 .20 .15 .30 .27 .11 .10 .27 .19 .23 .24 .24 .27 .20 .18 .25 .32 .26 .38 .36
[1] 3gql.a .16 .17 .27 .13 .17 .27
0
.23 .18 .21 .12 .16 .16 .13 .14 .15 .14 .17 .18 .14 .14 .18 .15 .19 .19 .16 .24 .19 .19 .23 .27 .18 .17 .13 .14 .17 .19 .14 .15 .10 .11 .13 .32 .29
[1] 3js2.a .20 .20 .09 .22 .16 .15 .23
0
.21 .10 .24 .21 .20 .20 .21 .28 .23 .24 .27 .20 .21 .26 .24 .20 .22 .16 .07 .29 .27 .10 .10 .20 .17 .22 .21 .21 .23 .23 .19 .24 .26 .25 .38 .33
[1] 3ky2.a .08 .08 .23 .12 .13 .28 .18 .21
0
.17 .11 .08 .09 .09 .10 .20 .18 .12 .14 .09 .10 .08 .12 .14 .13 .12 .23 .17 .15 .26 .25 .09 .14 .11 .07 .10 .09 .10 .13 .13 .19 .14 .26 .22
[1] 3rhx.b .17 .16 .14 .19 .10 .14 .21 .10 .17
0
.18 .18 .14 .15 .12 .27 .22 .17 .18 .16 .12 .19 .16 .16 .17 .12 .12 .23 .18 .13 .13 .15 .13 .15 .16 .18 .18 .15 .13 .17 .21 .19 .33 .28
[1] 3tt0.a .16 .14 .27 .13 .13 .27 .12 .24 .11 .18
0
.15 .12 .13 .11 .20 .17 .12 .13 .13 .11 .12 .13 .15 .15 .17 .26 .17 .15 .25 .25 .17 .16 .10 .13 .17 .11 .12 .15 .10 .11 .12 .29 .28
[1] 4f63.a .04 .05 .18 .07 .13 .24 .16 .21 .08 .18 .15
0
.08 .04 .08 .20 .18 .09 .13 .06 .08 .14 .13 .17 .11 .09 .22 .14 .14 .24 .26 .07 .11 .09 .07 .07 .12 .08 .09 .13 .19 .11 .24 .23
[1] 4f63.b .07 .04 .20 .09 .09 .25 .16 .20 .09 .14 .12 .08
0
.08 .04 .20 .14 .10 .10 .09 .06 .12 .10 .16 .08 .10 .19 .13 .12 .25 .25 .08 .12 .08 .08 .11 .11 .08 .12 .12 .15 .12 .26 .24
[1] 4f64.a .05 .07 .20 .04 .10 .22 .13 .20 .09 .15 .13 .04 .08
0
.07 .20 .19 .07 .11 .04 .06 .12 .10 .16 .10 .07 .21 .12 .11 .22 .24 .09 .08 .06 .08 .07 .09 .07 .07 .10 .16 .09 .22 .23
[1] 4f64.b .08 .05 .22 .08 .08 .23 .14 .21 .10 .12 .11 .08 .04 .07
0
.21 .16 .07 .08 .08 .02 .11 .09 .16 .07 .10 .20 .12 .08 .23 .23 .09 .10 .05 .09 .11 .09 .06 .10 .09 .13 .10 .25 .25
[1] 4f65.a .20 .19 .28 .22 .24 .33 .15 .28 .20 .27 .20 .20 .20 .20 .21
0
.10 .24 .20 .22 .20 .23 .24 .23 .22 .23 .30 .19 .21 .30 .35 .22 .24 .22 .17 .22 .23 .19 .21 .19 .22 .21 .31 .25
[1] 4nk9.a .18 .15 .26 .20 .19 .32 .14 .23 .18 .22 .17 .18 .14 .19 .16 .10
0
.20 .22 .20 .16 .21 .19 .22 .15 .20 .25 .21 .21 .28 .28 .17 .22 .18 .15 .21 .21 .17 .21 .15 .16 .20 .37 .33
[1] 4nka.a .10 .09 .25 .08 .12 .24 .17 .24 .12 .17 .12 .09 .10 .07 .07 .24 .20
0
.06 .09 .07 .14 .12 .20 .12 .11 .24 .14 .10 .25 .23 .11 .11 .08 .11 .13 .12 .09 .11 .10 .18 .12 .25 .28
[1] 4nka.b .14 .11 .28 .11 .14 .26 .18 .27 .14 .18 .13 .13 .10 .11 .08 .20 .22 .06
0
.13 .10 .15 .14 .21 .13 .16 .27 .11 .07 .28 .26 .16 .14 .09 .13 .16 .13 .09 .14 .13 .20 .14 .23 .25
[1] 4nks.a .06 .08 .22 .06 .10 .25 .14 .20 .09 .16 .13 .06 .09 .04 .08 .22 .20 .09 .13
0
.07 .12 .10 .16 .12 .08 .22 .14 .13 .23 .25 .08 .09 .08 .10 .09 .09 .09 .08 .09 .16 .09 .25 .24
[1] 4nks.b .08 .06 .22 .09 .08 .24 .14 .21 .10 .12 .11 .08 .06 .06 .02 .20 .16 .07 .10 .07
0
.11 .09 .14 .09 .09 .21 .11 .10 .22 .24 .09 .12 .07 .09 .11 .11 .07 .11 .10 .13 .09 .25 .25
[1] 4rwi.a .11 .13 .29 .14 .15 .31 .18 .26 .08 .19 .12 .14 .12 .12 .11 .23 .21 .14 .15 .12 .11
0
.06 .11 .18 .13 .25 .17 .17 .30 .30 .12 .17 .13 .11 .10 .11 .13 .15 .14 .19 .13 .29 .29
[1] 4rwi.b .10 .10 .28 .12 .13 .28 .15 .24 .12 .16 .13 .13 .10 .10 .09 .24 .19 .12 .14 .10 .09 .06
0
.15 .14 .12 .22 .16 .14 .28 .28 .10 .14 .09 .11 .10 .12 .11 .12 .10 .14 .10 .31 .30
[1] 4rwk.a .17 .18 .22 .18 .13 .25 .19 .20 .14 .16 .15 .17 .16 .16 .16 .23 .22 .20 .21 .16 .14 .11 .15
0
.20 .13 .22 .20 .22 .22 .23 .17 .16 .18 .17 .15 .19 .16 .15 .18 .21 .18 .31 .27
[1] 4rwl.b .12 .08 .23 .11 .10 .27 .19 .22 .13 .17 .15 .11 .08 .10 .07 .22 .15 .12 .13 .12 .09 .18 .14 .20
0
.13 .21 .16 .14 .27 .26 .11 .10 .08 .13 .14 .10 .12 .14 .13 .16 .15 .29 .26
[1] 4uwb.a .06 .09 .17 .10 .07 .20 .16 .16 .12 .12 .17 .09 .10 .07 .10 .23 .20 .11 .16 .08 .09 .13 .12 .13 .13
0
.16 .16 .15 .19 .21 .07 .07 .11 .11 .10 .13 .11 .06 .13 .20 .13 .27 .24
[1] 4uwc.a .20 .19 .08 .23 .16 .15 .24 .07 .23 .12 .26 .22 .19 .21 .20 .30 .25 .24 .27 .22 .21 .25 .22 .22 .21 .16
0
.30 .28 .11 .12 .18 .17 .22 .21 .21 .24 .23 .20 .24 .26 .26 .42 .35
[1] 4v01.b .13 .13 .29 .13 .18 .30 .19 .29 .17 .23 .17 .14 .13 .12 .12 .19 .21 .14 .11 .14 .11 .17 .16 .20 .16 .16 .30
0
.07 .31 .33 .16 .17 .13 .12 .16 .18 .12 .16 .14 .22 .14 .24 .27
[1] 4v04.b .14 .11 .29 .12 .14 .27 .19 .27 .15 .18 .15 .14 .12 .11 .08 .21 .21 .10 .07 .13 .10 .17 .14 .22 .14 .15 .28 .07
0
.27 .28 .15 .15 .08 .13 .17 .14 .10 .14 .12 .20 .15 .25 .27
[1] 4wun.a .25 .25 .08 .23 .19 .11 .23 .10 .26 .13 .25 .24 .25 .22 .23 .30 .28 .25 .28 .23 .22 .30 .28 .22 .27 .19 .11 .31 .27
0
.10 .25 .21 .24 .25 .23 .28 .20 .18 .23 .27 .23 .37 .34
[1] 4zsa.a .26 .25 .12 .25 .19 .10 .27 .10 .25 .13 .25 .26 .25 .24 .23 .35 .28 .23 .26 .25 .24 .30 .28 .23 .26 .21 .12 .33 .28 .10
0
.25 .21 .25 .26 .26 .28 .23 .21 .25 .28 .28 .41 .38
[1] 5a46.a .05 .06 .21 .11 .11 .27 .18 .20 .09 .15 .17 .07 .08 .09 .09 .22 .17 .11 .16 .08 .09 .12 .10 .17 .11 .07 .18 .16 .15 .25 .25
0
.11 .11 .07 .10 .12 .12 .10 .13 .20 .15 .29 .25
[1] 5a4c.a .12 .10 .19 .08 .04 .19 .17 .17 .14 .13 .16 .11 .12 .08 .10 .24 .22 .11 .14 .09 .12 .17 .14 .16 .10 .07 .17 .17 .15 .21 .21 .11
0
.07 .12 .13 .11 .12 .08 .11 .18 .14 .28 .25
[1] 5a4c.b .10 .07 .25 .07 .08 .23 .13 .22 .11 .15 .10 .09 .08 .06 .05 .22 .18 .08 .09 .08 .07 .13 .09 .18 .08 .11 .22 .13 .08 .24 .25 .11 .07
0
.09 .12 .09 .06 .10 .07 .13 .09 .26 .26
[1] 5am6.b .07 .06 .21 .11 .13 .24 .14 .21 .07 .16 .13 .07 .08 .08 .09 .17 .15 .11 .13 .10 .09 .11 .11 .17 .13 .11 .21 .12 .13 .25 .26 .07 .12 .09
0
.09 .13 .09 .12 .10 .18 .12 .26 .23
[1] 5am7.a .06 .09 .20 .10 .14 .24 .17 .21 .10 .18 .17 .07 .11 .07 .11 .22 .21 .13 .16 .09 .11 .10 .10 .15 .14 .10 .21 .16 .17 .23 .26 .10 .13 .12 .09
0
.12 .07 .10 .15 .20 .12 .24 .25
[1] 5b7v.b .10 .09 .26 .10 .13 .27 .19 .23 .09 .18 .11 .12 .11 .09 .09 .23 .21 .12 .13 .09 .11 .11 .12 .19 .10 .13 .24 .18 .14 .28 .28 .12 .11 .09 .13 .12
0
.11 .12 .14 .16 .15 .25 .27
[1] 5ew8.a .09 .08 .21 .07 .11 .20 .14 .23 .10 .15 .12 .08 .08 .07 .06 .19 .17 .09 .09 .09 .07 .13 .11 .16 .12 .11 .23 .12 .10 .20 .23 .12 .12 .06 .09 .07 .11
0
.07 .10 .17 .08 .23 .24
[1] 5uq0.a .09 .11 .18 .09 .10 .18 .15 .19 .13 .13 .15 .09 .12 .07 .10 .21 .21 .11 .14 .08 .11 .15 .12 .15 .14 .06 .20 .16 .14 .18 .21 .10 .08 .10 .12 .10 .12 .07
0
.11 .20 .11 .26 .23
[1] 5ur1.a .14 .11 .26 .09 .12 .25 .10 .24 .13 .17 .10 .13 .12 .10 .09 .19 .15 .10 .13 .09 .10 .14 .10 .18 .13 .13 .24 .14 .12 .23 .25 .13 .11 .07 .10 .15 .14 .10 .11
0
.11 .09 .29 .27
[1] 5ur1.b .19 .16 .30 .17 .16 .32 .11 .26 .19 .21 .11 .19 .15 .16 .13 .22 .16 .18 .20 .16 .13 .19 .14 .21 .16 .20 .26 .22 .20 .27 .28 .20 .18 .13 .18 .20 .16 .17 .20 .11
0
.15 .36 .34
[1] 5vnd.b .12 .12 .24 .09 .13 .26 .13 .25 .14 .19 .12 .11 .12 .09 .10 .21 .20 .12 .14 .09 .09 .13 .10 .18 .15 .13 .26 .14 .15 .23 .28 .15 .14 .09 .12 .12 .15 .08 .11 .09 .15
0
.26 .27
[2] 3gqi.a .25 .26 .36 .23 .30 .38 .32 .38 .26 .33 .29 .24 .26 .22 .25 .31 .37 .25 .23 .25 .25 .29 .31 .31 .29 .27 .42 .24 .25 .37 .41 .29 .28 .26 .26 .24 .25 .23 .26 .29 .36 .26
0
.17
[2] 5flf.a .23 .24 .30 .25 .26 .36 .29 .33 .22 .28 .28 .23 .24 .23 .25 .25 .33 .28 .25 .24 .25 .29 .30 .27 .26 .24 .35 .27 .27 .34 .38 .25 .25 .26 .23 .25 .27 .24 .23 .27 .34 .27 .17
0
[Pocket clash dissimilarity matrix]

Site backbone RMSD (median 1.2 Å)

Pockets (x) vs pockets (y) colored by RMSD of site residue backbone atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
1agw.a
1agw.b
1fgi.a
2fgi.a
2fgi.b
3c4f.b
3gql.a
3js2.a
3ky2.a
3rhx.b
3tt0.a
4f63.a
4f63.b
4f64.a
4f64.b
4f65.a
4nk9.a
4nka.a
4nka.b
4nks.a
4nks.b
4rwi.a
4rwi.b
4rwk.a
4rwl.b
4uwb.a
4uwc.a
4v01.b
4v04.b
4wun.a
4zsa.a
5a46.a
5a4c.a
5a4c.b
5am6.b
5am7.a
5b7v.b
5ew8.a
5uq0.a
5ur1.a
5ur1.b
5vnd.b
3gqi.a
5flf.a
[1] 1agw.a
0
0.4 0.7 0.3 0.4 0.8 1.6 0.6 0.7 0.5 0.8 0.3 0.4 0.3 0.4 0.6 0.8 0.3 0.5 0.4 0.4 0.7 0.4 0.8 0.8 0.4 0.5 1.5 1.5 0.8 0.9 0.4 0.3 0.4 0.7 0.3 1.1 0.3 0.3 0.4 0.8 0.9 4.2 3.9
[1] 1agw.b 0.4
0
2.2 0.4 0.5 2.3 1.1 2.0 0.5 0.7 0.7 0.5 0.4 0.5 0.4 1.8 1.8 0.5 0.5 0.6 0.4 0.6 0.4 1.0 0.8 0.8 2.3 1.5 1.4 2.4 2.0 0.7 0.8 0.5 0.6 0.5 1.0 0.5 0.7 1.2 1.5 1.0 1.6 1.6
[1] 1fgi.a 0.7 2.2
0
0.7 2.2 0.6 2.4 1.0 1.3 1.9 2.3 0.6 1.8 0.6 2.2 1.8 1.9 0.8 2.3 0.7 1.8 2.1 1.5 1.8 2.2 1.8 1.0 1.9 2.7 0.5 0.9 2.1 1.5 2.3 2.1 1.1 1.6 2.1 1.4 1.7 2.3 2.7 4.4 4.1
[1] 2fgi.a 0.3 0.4 0.7
0
0.4 0.8 1.6 0.5 0.7 0.5 0.8 0.3 0.4 0.3 0.4 0.5 0.7 0.3 0.5 0.4 0.4 0.7 0.5 0.8 0.8 0.3 0.4 1.5 1.5 0.8 0.9 0.4 0.3 0.4 0.5 0.4 1.0 0.4 0.4 0.3 0.8 0.8 4.1 3.8
[1] 2fgi.b 0.4 0.5 2.2 0.4
0
2.2 0.9 1.9 0.5 0.6 0.7 0.5 0.4 0.5 0.6 1.6 1.6 0.5 0.7 0.5 0.5 0.6 0.4 0.8 0.7 0.7 2.2 1.5 1.5 2.3 2.0 0.8 0.6 0.6 0.6 0.6 1.1 0.7 0.7 0.9 1.4 0.9 1.7 1.6
[1] 3c4f.b 0.8 2.3 0.6 0.8 2.2
0
2.4 1.1 1.4 1.9 2.3 0.7 1.8 0.7 2.2 1.9 1.9 0.9 2.4 0.8 1.8 2.1 1.5 1.8 2.2 1.9 1.0 1.9 2.7 0.6 0.7 2.1 1.5 2.4 2.1 1.1 1.6 2.2 1.4 1.7 2.3 2.7 4.4 4.1
[1] 3gql.a 1.6 1.1 2.4 1.6 0.9 2.4
0
2.2 1.5 1.6 1.4 1.6 0.9 1.6 1.0 1.8 1.9 1.6 1.9 1.6 0.9 1.6 0.8 1.5 1.8 1.8 2.4 2.2 2.3 2.0 2.2 1.9 1.6 1.8 1.2 1.6 1.0 1.8 0.8 0.6 0.9 1.9 3.2 2.9
[1] 3js2.a 0.6 2.0 1.0 0.5 1.9 1.1 2.2
0
1.2 1.7 2.0 0.6 1.6 0.6 2.0 1.5 1.6 0.6 2.2 0.5 1.6 1.9 1.3 1.5 2.0 1.7 0.8 1.9 2.6 1.1 1.0 1.9 1.1 2.1 1.9 0.9 1.5 2.0 1.2 1.4 2.0 2.4 4.3 3.9
[1] 3ky2.a 0.7 0.5 1.3 0.7 0.5 1.4 1.5 1.2
0
0.7 0.5 0.8 0.4 0.7 0.4 1.2 1.2 0.7 0.8 0.8 0.5 0.3 0.6 0.4 1.0 0.7 1.3 1.6 1.6 1.4 1.3 0.8 0.7 0.7 0.7 0.8 1.3 0.8 0.4 0.9 1.1 1.2 3.7 3.5
[1] 3rhx.b 0.5 0.7 1.9 0.5 0.6 1.9 1.6 1.7 0.7
0
0.9 0.6 0.4 0.5 0.7 1.5 1.6 0.5 0.8 0.6 0.5 0.8 0.4 0.8 0.8 0.6 1.9 1.4 1.5 2.1 1.7 0.8 0.6 0.8 0.6 0.5 1.0 0.8 0.6 1.0 1.4 1.2 3.8 3.5
[1] 3tt0.a 0.8 0.7 2.3 0.8 0.7 2.3 1.4 2.0 0.5 0.9
0
0.9 0.7 0.8 0.7 1.6 1.6 0.7 0.9 0.8 0.7 0.8 0.5 0.9 1.1 1.1 2.3 1.6 1.6 2.4 2.1 1.2 0.9 0.9 1.0 0.9 1.2 1.1 0.8 1.0 1.2 1.1 3.7 3.5
[1] 4f63.a 0.3 0.5 0.6 0.3 0.5 0.7 1.6 0.6 0.8 0.6 0.9
0
0.5 0.3 0.5 0.5 0.7 0.3 0.5 0.4 0.5 0.7 0.5 0.9 0.8 0.5 0.6 1.5 1.5 0.8 0.9 0.5 0.4 0.5 0.7 0.4 1.1 0.4 0.4 0.4 0.8 0.9 4.2 4.0
[1] 4f63.b 0.4 0.4 1.8 0.4 0.4 1.8 0.9 1.6 0.4 0.4 0.7 0.5
0
0.4 0.3 1.6 1.6 0.4 0.4 0.5 0.3 0.5 0.4 0.7 0.7 0.6 1.8 1.4 1.4 1.9 1.6 0.6 0.5 0.4 0.4 0.5 1.0 0.5 0.5 0.9 1.4 0.9 1.7 1.5
[1] 4f64.a 0.3 0.5 0.6 0.3 0.5 0.7 1.6 0.6 0.7 0.5 0.8 0.3 0.4
0
0.4 0.4 0.7 0.3 0.5 0.4 0.4 0.7 0.5 0.8 0.8 0.4 0.5 1.5 1.5 0.7 0.9 0.5 0.3 0.5 0.7 0.4 1.1 0.4 0.3 0.4 0.8 0.9 4.2 3.9
[1] 4f64.b 0.4 0.4 2.2 0.4 0.6 2.2 1.0 2.0 0.4 0.7 0.7 0.5 0.3 0.4
0
1.7 1.8 0.4 0.3 0.5 0.3 0.6 0.5 0.9 0.8 0.8 2.2 1.4 1.4 2.3 2.0 0.7 0.7 0.4 0.5 0.4 1.0 0.4 0.7 1.1 1.6 1.0 1.6 1.5
[1] 4f65.a 0.6 1.8 1.8 0.5 1.6 1.9 1.8 1.5 1.2 1.5 1.6 0.5 1.6 0.4 1.7
0
0.4 0.7 1.9 0.5 1.6 1.8 1.2 1.4 1.7 1.6 1.8 1.8 2.4 1.7 1.7 1.9 0.9 1.9 1.6 0.8 0.9 1.8 0.9 0.7 1.1 2.1 4.2 3.8
[1] 4nk9.a 0.8 1.8 1.9 0.7 1.6 1.9 1.9 1.6 1.2 1.6 1.6 0.7 1.6 0.7 1.8 0.4
0
0.8 1.8 0.7 1.6 1.8 1.3 1.4 1.6 1.6 1.9 1.7 2.2 1.9 1.8 1.9 1.0 1.9 1.7 0.9 0.8 1.8 1.1 0.8 1.0 2.1 4.3 3.9
[1] 4nka.a 0.3 0.5 0.8 0.3 0.5 0.9 1.6 0.6 0.7 0.5 0.7 0.3 0.4 0.3 0.4 0.7 0.8
0
0.5 0.4 0.4 0.7 0.5 0.8 0.8 0.4 0.5 1.5 1.5 0.9 0.8 0.4 0.5 0.5 0.4 0.4 0.7 0.4 0.4 0.5 0.8 0.9 4.0 3.7
[1] 4nka.b 0.5 0.5 2.3 0.5 0.7 2.4 1.9 2.2 0.8 0.8 0.9 0.5 0.4 0.5 0.3 1.9 1.8 0.5
0
0.6 0.4 0.8 0.5 1.2 0.6 0.9 2.4 1.4 1.3 2.5 2.1 0.7 0.8 0.4 0.6 0.5 0.4 0.4 0.8 1.2 1.6 0.9 3.9 3.6
[1] 4nks.a 0.4 0.6 0.7 0.4 0.5 0.8 1.6 0.5 0.8 0.6 0.8 0.4 0.5 0.4 0.5 0.5 0.7 0.4 0.6
0
0.4 0.8 0.6 0.8 0.8 0.4 0.5 1.6 1.6 0.8 0.8 0.5 0.4 0.5 0.6 0.5 0.9 0.5 0.5 0.4 0.8 0.9 4.1 3.8
[1] 4nks.b 0.4 0.4 1.8 0.4 0.5 1.8 0.9 1.6 0.5 0.5 0.7 0.5 0.3 0.4 0.3 1.6 1.6 0.4 0.4 0.4
0
0.5 0.5 0.7 0.7 0.6 1.8 1.4 1.4 1.9 1.7 0.6 0.5 0.4 0.5 0.5 0.9 0.5 0.5 0.9 1.4 0.9 1.6 1.5
[1] 4rwi.a 0.7 0.6 2.1 0.7 0.6 2.1 1.6 1.9 0.3 0.8 0.8 0.7 0.5 0.7 0.6 1.8 1.8 0.7 0.8 0.8 0.5
0
0.4 0.8 1.0 0.9 2.1 1.6 1.6 2.2 1.9 0.8 0.8 0.8 0.8 0.8 1.2 0.8 0.5 1.0 1.6 1.2 3.6 3.5
[1] 4rwi.b 0.4 0.4 1.5 0.5 0.4 1.5 0.8 1.3 0.6 0.4 0.5 0.5 0.4 0.5 0.5 1.2 1.3 0.5 0.5 0.6 0.5 0.4
0
0.8 0.8 0.6 1.4 1.4 1.4 1.6 1.4 0.6 0.5 0.5 0.5 0.6 1.0 0.6 0.6 0.9 1.0 0.8 1.7 1.6
[1] 4rwk.a 0.8 1.0 1.8 0.8 0.8 1.8 1.5 1.5 0.4 0.8 0.9 0.9 0.7 0.8 0.9 1.4 1.4 0.8 1.2 0.8 0.7 0.8 0.8
0
1.2 0.9 1.8 1.7 1.8 1.8 1.6 1.2 0.8 1.2 1.0 0.9 1.4 1.2 0.6 0.9 1.4 1.6 3.6 3.4
[1] 4rwl.b 0.8 0.8 2.2 0.8 0.7 2.2 1.8 2.0 1.0 0.8 1.1 0.8 0.7 0.8 0.8 1.7 1.6 0.8 0.6 0.8 0.7 1.0 0.8 1.2
0
0.9 2.2 1.3 1.3 2.4 2.0 0.9 0.8 0.8 0.8 0.8 0.5 0.9 0.9 1.1 1.4 1.1 3.9 3.6
[1] 4uwb.a 0.4 0.8 1.8 0.3 0.7 1.9 1.8 1.7 0.7 0.6 1.1 0.5 0.6 0.4 0.8 1.6 1.6 0.4 0.9 0.4 0.6 0.9 0.6 0.9 0.9
0
1.9 1.5 1.6 2.0 1.7 0.8 0.5 0.9 0.8 0.6 1.2 0.9 0.5 1.0 1.5 1.4 4.0 3.7
[1] 4uwc.a 0.5 2.3 1.0 0.4 2.2 1.0 2.4 0.8 1.3 1.9 2.3 0.6 1.8 0.5 2.2 1.8 1.9 0.5 2.4 0.5 1.8 2.1 1.4 1.8 2.2 1.9
0
1.9 2.8 1.1 1.1 2.1 1.2 2.4 2.2 0.9 1.4 2.2 1.2 1.6 2.2 2.7 4.4 4.1
[1] 4v01.b 1.5 1.5 1.9 1.5 1.5 1.9 2.2 1.9 1.6 1.4 1.6 1.5 1.4 1.5 1.4 1.8 1.7 1.5 1.4 1.6 1.4 1.6 1.4 1.7 1.3 1.5 1.9
0
0.5 2.0 1.9 1.5 1.5 1.4 1.4 1.5 1.3 1.4 1.5 1.7 1.6 1.6 4.1 3.8
[1] 4v04.b 1.5 1.4 2.7 1.5 1.5 2.7 2.3 2.6 1.6 1.5 1.6 1.5 1.4 1.5 1.4 2.4 2.2 1.5 1.3 1.6 1.4 1.6 1.4 1.8 1.3 1.6 2.8 0.5
0
2.9 2.5 1.5 1.6 1.4 1.4 1.4 1.3 1.4 1.6 1.8 2.0 1.5 3.9 3.7
[1] 4wun.a 0.8 2.4 0.5 0.8 2.3 0.6 2.0 1.1 1.4 2.1 2.4 0.8 1.9 0.7 2.3 1.7 1.9 0.9 2.5 0.8 1.9 2.2 1.6 1.8 2.4 2.0 1.1 2.0 2.9
0
0.8 2.3 1.6 2.5 2.2 1.2 1.5 2.4 1.5 1.7 2.3 2.9 2.6 2.3
[1] 4zsa.a 0.9 2.0 0.9 0.9 2.0 0.7 2.2 1.0 1.3 1.7 2.1 0.9 1.6 0.9 2.0 1.7 1.8 0.8 2.1 0.8 1.7 1.9 1.4 1.6 2.0 1.7 1.1 1.9 2.5 0.8
0
2.0 1.4 2.2 1.9 1.1 1.6 2.0 1.3 1.5 2.1 2.4 4.3 4.0
[1] 5a46.a 0.4 0.7 2.1 0.4 0.8 2.1 1.9 1.9 0.8 0.8 1.2 0.5 0.6 0.5 0.7 1.9 1.9 0.4 0.7 0.5 0.6 0.8 0.6 1.2 0.9 0.8 2.1 1.5 1.5 2.3 2.0
0
0.6 0.7 0.8 0.5 1.1 0.7 0.5 1.2 1.8 1.2 4.0 3.8
[1] 5a4c.a 0.3 0.8 1.5 0.3 0.6 1.5 1.6 1.1 0.7 0.6 0.9 0.4 0.5 0.3 0.7 0.9 1.0 0.5 0.8 0.4 0.5 0.8 0.5 0.8 0.8 0.5 1.2 1.5 1.6 1.6 1.4 0.6
0
0.7 0.6 0.5 0.8 0.7 0.6 0.6 1.0 1.1 3.9 3.6
[1] 5a4c.b 0.4 0.5 2.3 0.4 0.6 2.4 1.8 2.1 0.7 0.8 0.9 0.5 0.4 0.5 0.4 1.9 1.9 0.5 0.4 0.5 0.4 0.8 0.5 1.2 0.8 0.9 2.4 1.4 1.4 2.5 2.2 0.7 0.7
0
0.7 0.5 1.0 0.5 0.8 1.1 1.6 0.8 3.9 3.7
[1] 5am6.b 0.7 0.6 2.1 0.5 0.6 2.1 1.2 1.9 0.7 0.6 1.0 0.7 0.4 0.7 0.5 1.6 1.7 0.4 0.6 0.6 0.5 0.8 0.5 1.0 0.8 0.8 2.2 1.4 1.4 2.2 1.9 0.8 0.6 0.7
0
0.6 1.2 0.8 0.6 1.0 1.5 1.2 2.0 1.9
[1] 5am7.a 0.3 0.5 1.1 0.4 0.6 1.1 1.6 0.9 0.8 0.5 0.9 0.4 0.5 0.4 0.4 0.8 0.9 0.4 0.5 0.5 0.5 0.8 0.6 0.9 0.8 0.6 0.9 1.5 1.4 1.2 1.1 0.5 0.5 0.5 0.6
0
1.1 0.4 0.5 0.6 0.9 1.0 4.2 3.9
[1] 5b7v.b 1.1 1.0 1.6 1.0 1.1 1.6 1.0 1.5 1.3 1.0 1.2 1.1 1.0 1.1 1.0 0.9 0.8 0.7 0.4 0.9 0.9 1.2 1.0 1.4 0.5 1.2 1.4 1.3 1.3 1.5 1.6 1.1 0.8 1.0 1.2 1.1
0
1.1 0.8 0.8 0.9 1.2 2.4 2.3
[1] 5ew8.a 0.3 0.5 2.1 0.4 0.7 2.2 1.8 2.0 0.8 0.8 1.1 0.4 0.5 0.4 0.4 1.8 1.8 0.4 0.4 0.5 0.5 0.8 0.6 1.2 0.9 0.9 2.2 1.4 1.4 2.4 2.0 0.7 0.7 0.5 0.8 0.4 1.1
0
0.6 1.1 1.7 1.1 4.0 3.8
[1] 5uq0.a 0.3 0.7 1.4 0.4 0.7 1.4 0.8 1.2 0.4 0.6 0.8 0.4 0.5 0.3 0.7 0.9 1.1 0.4 0.8 0.5 0.5 0.5 0.6 0.6 0.9 0.5 1.2 1.5 1.6 1.5 1.3 0.5 0.6 0.8 0.6 0.5 0.8 0.6
0
0.8 1.2 1.2 1.6 1.4
[1] 5ur1.a 0.4 1.2 1.7 0.3 0.9 1.7 0.6 1.4 0.9 1.0 1.0 0.4 0.9 0.4 1.1 0.7 0.8 0.5 1.2 0.4 0.9 1.0 0.9 0.9 1.1 1.0 1.6 1.7 1.8 1.7 1.5 1.2 0.6 1.1 1.0 0.6 0.8 1.1 0.8
0
0.7 1.4 1.9 1.7
[1] 5ur1.b 0.8 1.5 2.3 0.8 1.4 2.3 0.9 2.0 1.1 1.4 1.2 0.8 1.4 0.8 1.6 1.1 1.0 0.8 1.6 0.8 1.4 1.6 1.0 1.4 1.4 1.5 2.2 1.6 2.0 2.3 2.1 1.8 1.0 1.6 1.5 0.9 0.9 1.7 1.2 0.7
0
1.6 2.3 2.0
[1] 5vnd.b 0.9 1.0 2.7 0.8 0.9 2.7 1.9 2.4 1.2 1.2 1.1 0.9 0.9 0.9 1.0 2.1 2.1 0.9 0.9 0.9 0.9 1.2 0.8 1.6 1.1 1.4 2.7 1.6 1.5 2.9 2.4 1.2 1.1 0.8 1.2 1.0 1.2 1.1 1.2 1.4 1.6
0
4.2 4.0
[2] 3gqi.a 4.2 1.6 4.4 4.1 1.7 4.4 3.2 4.3 3.7 3.8 3.7 4.2 1.7 4.2 1.6 4.2 4.3 4.0 3.9 4.1 1.6 3.6 1.7 3.6 3.9 4.0 4.4 4.1 3.9 2.6 4.3 4.0 3.9 3.9 2.0 4.2 2.4 4.0 1.6 1.9 2.3 4.2
0
1.0
[2] 5flf.a 3.9 1.6 4.1 3.8 1.6 4.1 2.9 3.9 3.5 3.5 3.5 4.0 1.5 3.9 1.5 3.8 3.9 3.7 3.6 3.8 1.5 3.5 1.6 3.4 3.6 3.7 4.1 3.8 3.7 2.3 4.0 3.8 3.6 3.7 1.9 3.9 2.3 3.8 1.4 1.7 2.0 4.0 1.0
0
[Binding site backbone RMSD matrix]

Site full-atom RMSD (median 1.0 Å)

Pockets (x) vs pockets (y) colored by RMSD of all site residue atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
1agw.a
1agw.b
1fgi.a
2fgi.a
2fgi.b
3c4f.b
3gql.a
3js2.a
3ky2.a
3rhx.b
3tt0.a
4f63.a
4f63.b
4f64.a
4f64.b
4f65.a
4nk9.a
4nka.a
4nka.b
4nks.a
4nks.b
4rwi.a
4rwi.b
4rwk.a
4rwl.b
4uwb.a
4uwc.a
4v01.b
4v04.b
4wun.a
4zsa.a
5a46.a
5a4c.a
5a4c.b
5am6.b
5am7.a
5b7v.b
5ew8.a
5uq0.a
5ur1.a
5ur1.b
5vnd.b
3gqi.a
5flf.a
[1] 1agw.a
0
0.5 0.5 0.4 0.6 0.8 2.0 0.7 1.5 0.6 1.3 0.4 0.5 0.4 0.6 0.8 0.7 0.5 0.7 0.6 0.6 1.2 0.7 1.0 0.8 0.6 0.6 2.0 2.0 0.9 1.0 0.6 0.6 0.6 0.7 0.6 1.2 0.6 0.5 0.6 0.8 1.0 3.7 4.2
[1] 1agw.b 0.5
0
2.0 0.6 0.7 2.0 1.1 1.8 1.2 0.8 1.1 0.6 0.4 0.6 0.5 1.6 1.6 0.6 0.7 0.7 0.6 1.1 0.6 1.1 0.9 0.9 2.0 2.0 1.9 2.1 1.9 0.7 0.9 0.6 0.7 0.7 1.1 0.6 0.8 1.1 1.5 1.0 2.0 1.8
[1] 1fgi.a 0.5 2.0
0
0.7 2.2 0.7 2.5 1.0 1.7 1.9 2.2 0.6 1.5 0.6 1.9 2.1 1.6 0.8 3.0 0.8 1.6 2.1 1.3 1.7 1.9 1.6 1.0 2.2 3.5 0.7 1.0 1.9 1.4 3.0 2.5 1.1 1.5 2.9 1.3 2.1 2.5 3.3 4.4 4.5
[1] 2fgi.a 0.4 0.6 0.7
0
0.6 0.7 2.1 0.6 1.5 0.6 1.2 0.5 0.6 0.4 0.6 0.8 0.7 0.5 0.7 0.5 0.6 1.2 0.7 0.9 0.8 0.5 0.5 2.0 2.0 0.8 1.0 0.6 0.5 0.5 0.7 0.6 1.2 0.6 0.5 0.5 0.8 0.9 3.6 4.1
[1] 2fgi.b 0.6 0.7 2.2 0.6
0
2.2 0.9 2.0 1.3 0.8 1.0 0.7 0.6 0.6 0.7 1.7 1.4 0.7 1.5 0.6 0.6 1.2 0.7 1.0 0.8 0.8 2.2 2.0 2.3 2.3 2.0 0.8 0.7 1.4 1.2 0.7 1.1 1.4 0.8 1.2 1.5 1.7 2.3 1.9
[1] 3c4f.b 0.8 2.0 0.7 0.7 2.2
0
2.9 1.6 2.1 2.0 2.5 0.8 1.6 0.7 1.9 2.1 1.7 0.9 3.1 0.8 1.6 2.2 1.8 1.9 2.1 1.7 1.0 2.2 3.6 0.8 1.1 1.9 1.3 3.1 2.7 1.6 2.1 3.0 1.3 2.4 2.5 3.5 4.5 4.5
[1] 3gql.a 2.0 1.1 2.5 2.1 0.9 2.9
0
2.6 2.3 2.1 2.1 2.0 0.9 2.0 1.1 2.2 2.2 2.1 2.2 2.1 0.9 2.4 0.9 1.8 2.2 2.1 2.1 2.8 2.8 1.8 2.8 2.2 2.0 2.1 1.2 2.4 1.5 2.4 0.9 0.8 1.0 2.2 3.3 3.1
[1] 3js2.a 0.7 1.8 1.0 0.6 2.0 1.6 2.6
0
1.6 1.7 2.0 0.7 1.4 0.8 1.8 1.9 1.4 0.8 2.9 0.7 1.4 1.9 1.2 1.5 1.8 1.5 0.9 2.2 3.4 1.2 1.9 1.7 1.1 2.8 2.4 1.8 2.2 2.9 1.1 2.0 2.3 3.1 4.3 4.4
[1] 3ky2.a 1.5 1.2 1.7 1.5 1.3 2.1 2.3 1.6
0
1.4 1.1 1.5 1.2 1.5 1.2 1.6 1.7 1.5 1.5 1.5 1.2 1.0 1.2 0.7 1.6 1.5 1.5 2.4 2.4 1.6 2.4 1.5 1.5 1.5 1.3 2.1 2.2 1.8 0.8 1.4 1.6 1.8 3.6 3.9
[1] 3rhx.b 0.6 0.8 1.9 0.6 0.8 2.0 2.1 1.7 1.4
0
1.3 0.6 0.6 0.5 0.7 1.7 1.3 0.6 1.7 0.7 0.6 1.3 0.8 1.0 0.9 0.6 1.9 1.9 2.4 2.0 1.9 0.8 0.7 1.6 1.4 0.7 1.2 1.6 0.7 1.5 1.7 1.9 3.7 4.0
[1] 3tt0.a 1.3 1.1 2.2 1.2 1.0 2.5 2.1 2.0 1.1 1.3
0
1.3 1.0 1.3 1.0 1.7 1.8 1.2 1.3 1.2 1.0 1.1 1.1 1.1 1.4 1.4 2.1 2.2 2.2 2.2 2.6 1.5 1.4 1.3 1.2 2.0 2.1 1.8 0.9 1.2 1.4 1.5 3.4 3.7
[1] 4f63.a 0.4 0.6 0.6 0.5 0.7 0.8 2.0 0.7 1.5 0.6 1.3
0
0.5 0.4 0.6 0.8 0.8 0.5 0.8 0.6 0.7 1.3 0.7 1.0 0.9 0.6 0.6 2.1 2.0 0.9 0.9 0.6 0.6 0.6 0.7 0.7 1.3 0.6 0.5 0.6 0.9 1.0 3.8 4.2
[1] 4f63.b 0.5 0.4 1.5 0.6 0.6 1.6 0.9 1.4 1.2 0.6 1.0 0.5
0
0.5 0.4 1.4 1.4 0.6 0.6 0.7 0.5 1.0 0.6 0.9 0.8 0.7 1.5 2.0 1.9 1.7 1.5 0.7 0.7 0.6 0.6 0.7 1.1 0.6 0.6 0.9 1.3 1.0 2.0 1.7
[1] 4f64.a 0.4 0.6 0.6 0.4 0.6 0.7 2.0 0.8 1.5 0.5 1.3 0.4 0.5
0
0.5 0.6 0.7 0.5 0.7 0.5 0.6 1.3 0.7 1.0 0.9 0.5 0.6 2.1 2.0 0.8 0.9 0.6 0.5 0.6 0.7 0.6 1.2 0.5 0.4 0.6 0.9 1.0 3.7 4.2
[1] 4f64.b 0.6 0.5 1.9 0.6 0.7 1.9 1.1 1.8 1.2 0.7 1.0 0.6 0.4 0.5
0
1.5 1.5 0.6 0.5 0.7 0.5 1.1 0.6 1.1 0.9 0.9 1.9 2.0 1.9 2.1 1.9 0.7 0.8 0.5 0.7 0.6 1.1 0.5 0.7 1.0 1.4 1.0 1.9 1.8
[1] 4f65.a 0.8 1.6 2.1 0.8 1.7 2.1 2.2 1.9 1.6 1.7 1.7 0.8 1.4 0.6 1.5
0
0.6 0.8 2.2 0.8 1.4 1.8 1.2 1.3 1.6 1.4 2.1 2.2 2.9 2.1 2.0 1.7 0.9 2.2 1.7 0.9 1.1 2.2 0.9 0.8 1.2 2.4 4.0 4.1
[1] 4nk9.a 0.7 1.6 1.6 0.7 1.4 1.7 2.2 1.4 1.7 1.3 1.8 0.8 1.4 0.7 1.5 0.6
0
0.8 1.6 0.8 1.4 1.9 1.1 1.4 1.4 1.4 1.6 2.1 2.4 1.7 1.6 1.7 0.9 1.6 1.5 0.8 0.9 1.6 1.0 0.8 0.9 1.9 3.8 4.2
[1] 4nka.a 0.5 0.6 0.8 0.5 0.7 0.9 2.1 0.8 1.5 0.6 1.2 0.5 0.6 0.5 0.6 0.8 0.8
0
0.5 0.7 0.6 1.2 0.7 0.9 0.8 0.6 0.6 2.0 1.9 1.0 0.8 0.6 0.6 0.6 0.7 0.7 0.9 0.6 0.6 0.7 0.9 1.0 3.5 4.0
[1] 4nka.b 0.7 0.7 3.0 0.7 1.5 3.1 2.2 2.9 1.5 1.7 1.3 0.8 0.6 0.7 0.5 2.2 1.6 0.5
0
0.8 0.6 1.3 0.7 1.3 0.8 1.0 3.0 1.9 1.8 3.2 3.0 0.8 0.9 0.5 1.1 0.8 0.8 0.7 0.9 1.8 2.1 1.0 3.4 4.1
[1] 4nks.a 0.6 0.7 0.8 0.5 0.6 0.8 2.1 0.7 1.5 0.7 1.2 0.6 0.7 0.5 0.7 0.8 0.8 0.7 0.8
0
0.6 1.3 0.8 1.0 0.9 0.6 0.7 2.1 2.0 0.9 1.0 0.7 0.6 0.7 0.8 0.7 1.0 0.7 0.6 0.7 0.9 1.0 3.6 4.1
[1] 4nks.b 0.6 0.6 1.6 0.6 0.6 1.6 0.9 1.4 1.2 0.6 1.0 0.7 0.5 0.6 0.5 1.4 1.4 0.6 0.6 0.6
0
1.1 0.7 0.9 0.8 0.7 1.6 2.0 1.9 1.7 1.6 0.7 0.6 0.6 0.6 0.8 1.1 0.6 0.6 0.8 1.4 1.0 2.0 1.8
[1] 4rwi.a 1.2 1.1 2.1 1.2 1.2 2.2 2.4 1.9 1.0 1.3 1.1 1.3 1.0 1.3 1.1 1.8 1.9 1.2 1.3 1.3 1.1
0
0.9 0.9 1.4 1.3 2.0 2.3 2.2 2.2 2.4 1.3 1.3 1.3 1.1 1.9 2.1 1.6 0.8 1.3 1.7 1.6 3.5 3.9
[1] 4rwi.b 0.7 0.6 1.3 0.7 0.7 1.8 0.9 1.2 1.2 0.8 1.1 0.7 0.6 0.7 0.6 1.2 1.1 0.7 0.7 0.8 0.7 0.9
0
0.8 0.8 0.7 1.2 2.0 1.9 1.5 1.7 0.7 0.7 0.6 0.7 0.8 1.1 0.8 0.7 1.0 1.0 0.9 2.1 1.8
[1] 4rwk.a 1.0 1.1 1.7 0.9 1.0 1.9 1.8 1.5 0.7 1.0 1.1 1.0 0.9 1.0 1.1 1.3 1.4 0.9 1.3 1.0 0.9 0.9 0.8
0
1.2 1.1 1.7 2.2 2.2 1.7 2.1 1.2 1.0 1.3 1.1 1.9 2.2 1.7 0.8 1.1 1.4 1.6 3.5 3.2
[1] 4rwl.b 0.8 0.9 1.9 0.8 0.8 2.1 2.2 1.8 1.6 0.9 1.4 0.9 0.8 0.9 0.9 1.6 1.4 0.8 0.8 0.9 0.8 1.4 0.8 1.2
0
0.9 1.9 1.9 1.9 2.1 2.1 0.9 0.9 0.8 0.8 0.9 0.9 1.0 0.9 1.2 1.3 1.2 3.5 4.0
[1] 4uwb.a 0.6 0.9 1.6 0.5 0.8 1.7 2.1 1.5 1.5 0.6 1.4 0.6 0.7 0.5 0.9 1.4 1.4 0.6 1.0 0.6 0.7 1.3 0.7 1.1 0.9
0
1.6 2.0 2.0 1.8 1.6 0.7 0.5 0.9 0.9 0.8 1.4 0.9 0.5 0.9 1.4 1.3 3.6 4.0
[1] 4uwc.a 0.6 2.0 1.0 0.5 2.2 1.0 2.1 0.9 1.5 1.9 2.1 0.6 1.5 0.6 1.9 2.1 1.6 0.6 3.0 0.7 1.6 2.0 1.2 1.7 1.9 1.6
0
2.2 3.5 1.1 1.1 1.8 1.0 3.0 2.6 0.9 1.4 2.9 1.1 2.0 2.5 3.3 4.5 3.9
[1] 4v01.b 2.0 2.0 2.2 2.0 2.0 2.2 2.8 2.2 2.4 1.9 2.2 2.1 2.0 2.1 2.0 2.2 2.1 2.0 1.9 2.1 2.0 2.3 2.0 2.2 1.9 2.0 2.2
0
0.6 2.3 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 3.8 4.3
[1] 4v04.b 2.0 1.9 3.5 2.0 2.3 3.6 2.8 3.4 2.4 2.4 2.2 2.0 1.9 2.0 1.9 2.9 2.4 1.9 1.8 2.0 1.9 2.2 1.9 2.2 1.9 2.0 3.5 0.6
0
3.6 3.4 2.0 2.0 1.8 2.1 2.0 1.9 1.9 2.1 2.5 2.7 2.0 3.7 4.3
[1] 4wun.a 0.9 2.1 0.7 0.8 2.3 0.8 1.8 1.2 1.6 2.0 2.2 0.9 1.7 0.8 2.1 2.1 1.7 1.0 3.2 0.9 1.7 2.2 1.5 1.7 2.1 1.8 1.1 2.3 3.6
0
0.8 2.0 1.4 3.1 2.6 1.2 1.5 3.0 1.4 2.1 2.5 3.5 3.3 2.7
[1] 4zsa.a 1.0 1.9 1.0 1.0 2.0 1.1 2.8 1.9 2.4 1.9 2.6 0.9 1.5 0.9 1.9 2.0 1.6 0.8 3.0 1.0 1.6 2.4 1.7 2.1 2.1 1.6 1.1 2.2 3.4 0.8
0
1.8 1.3 3.0 2.5 1.6 2.1 2.8 1.3 2.2 2.4 3.2 4.5 4.6
[1] 5a46.a 0.6 0.7 1.9 0.6 0.8 1.9 2.2 1.7 1.5 0.8 1.5 0.6 0.7 0.6 0.7 1.7 1.7 0.6 0.8 0.7 0.7 1.3 0.7 1.2 0.9 0.7 1.8 2.0 2.0 2.0 1.8
0
0.6 0.7 0.9 0.7 1.2 0.7 0.6 1.1 1.6 1.2 3.6 4.1
[1] 5a4c.a 0.6 0.9 1.4 0.5 0.7 1.3 2.0 1.1 1.5 0.7 1.4 0.6 0.7 0.5 0.8 0.9 0.9 0.6 0.9 0.6 0.6 1.3 0.7 1.0 0.9 0.5 1.0 2.0 2.0 1.4 1.3 0.6
0
0.7 0.8 0.7 1.0 0.8 0.7 0.7 1.0 1.1 3.5 4.0
[1] 5a4c.b 0.6 0.6 3.0 0.5 1.4 3.1 2.1 2.8 1.5 1.6 1.3 0.6 0.6 0.6 0.5 2.2 1.6 0.6 0.5 0.7 0.6 1.3 0.6 1.3 0.8 0.9 3.0 2.0 1.8 3.1 3.0 0.7 0.7
0
1.1 0.7 1.1 0.6 0.8 1.7 2.0 0.9 3.5 4.1
[1] 5am6.b 0.7 0.7 2.5 0.7 1.2 2.7 1.2 2.4 1.3 1.4 1.2 0.7 0.6 0.7 0.7 1.7 1.5 0.7 1.1 0.8 0.6 1.1 0.7 1.1 0.8 0.9 2.6 2.0 2.1 2.6 2.5 0.9 0.8 1.1
0
0.8 1.3 1.2 0.6 1.2 1.7 1.5 2.3 1.9
[1] 5am7.a 0.6 0.7 1.1 0.6 0.7 1.6 2.4 1.8 2.1 0.7 2.0 0.7 0.7 0.6 0.6 0.9 0.8 0.7 0.8 0.7 0.8 1.9 0.8 1.9 0.9 0.8 0.9 2.0 2.0 1.2 1.6 0.7 0.7 0.7 0.8
0
1.3 1.0 0.6 0.8 1.0 1.2 3.8 4.2
[1] 5b7v.b 1.2 1.1 1.5 1.2 1.1 2.1 1.5 2.2 2.2 1.2 2.1 1.3 1.1 1.2 1.1 1.1 0.9 0.9 0.8 1.0 1.1 2.1 1.1 2.2 0.9 1.4 1.4 2.0 1.9 1.5 2.1 1.2 1.0 1.1 1.3 1.3
0
1.6 0.9 1.0 1.0 1.3 2.7 2.6
[1] 5ew8.a 0.6 0.6 2.9 0.6 1.4 3.0 2.4 2.9 1.8 1.6 1.8 0.6 0.6 0.5 0.5 2.2 1.6 0.6 0.7 0.7 0.6 1.6 0.8 1.7 1.0 0.9 2.9 2.0 1.9 3.0 2.8 0.7 0.8 0.6 1.2 1.0 1.6
0
0.7 1.8 2.1 1.2 3.7 4.2
[1] 5uq0.a 0.5 0.8 1.3 0.5 0.8 1.3 0.9 1.1 0.8 0.7 0.9 0.5 0.6 0.4 0.7 0.9 1.0 0.6 0.9 0.6 0.6 0.8 0.7 0.8 0.9 0.5 1.1 2.1 2.1 1.4 1.3 0.6 0.7 0.8 0.6 0.6 0.9 0.7
0
0.8 1.1 1.2 1.9 1.6
[1] 5ur1.a 0.6 1.1 2.1 0.5 1.2 2.4 0.8 2.0 1.4 1.5 1.2 0.6 0.9 0.6 1.0 0.8 0.8 0.7 1.8 0.7 0.8 1.3 1.0 1.1 1.2 0.9 2.0 2.1 2.5 2.1 2.2 1.1 0.7 1.7 1.2 0.8 1.0 1.8 0.8
0
0.8 1.9 2.5 2.0
[1] 5ur1.b 0.8 1.5 2.5 0.8 1.5 2.5 1.0 2.3 1.6 1.7 1.4 0.9 1.3 0.9 1.4 1.2 0.9 0.9 2.1 0.9 1.4 1.7 1.0 1.4 1.3 1.4 2.5 2.1 2.7 2.5 2.4 1.6 1.0 2.0 1.7 1.0 1.0 2.1 1.1 0.8
0
2.0 2.8 2.2
[1] 5vnd.b 1.0 1.0 3.3 0.9 1.7 3.5 2.2 3.1 1.8 1.9 1.5 1.0 1.0 1.0 1.0 2.4 1.9 1.0 1.0 1.0 1.0 1.6 0.9 1.6 1.2 1.3 3.3 2.1 2.0 3.5 3.2 1.2 1.1 0.9 1.5 1.2 1.3 1.2 1.2 1.9 2.0
0
3.8 4.3
[2] 3gqi.a 3.7 2.0 4.4 3.6 2.3 4.5 3.3 4.3 3.6 3.7 3.4 3.8 2.0 3.7 1.9 4.0 3.8 3.5 3.4 3.6 2.0 3.5 2.1 3.5 3.5 3.6 4.5 3.8 3.7 3.3 4.5 3.6 3.5 3.5 2.3 3.8 2.7 3.7 1.9 2.5 2.8 3.8
0
1.5
[2] 5flf.a 4.2 1.8 4.5 4.1 1.9 4.5 3.1 4.4 3.9 4.0 3.7 4.2 1.7 4.2 1.8 4.1 4.2 4.0 4.1 4.1 1.8 3.9 1.8 3.2 4.0 4.0 3.9 4.3 4.3 2.7 4.6 4.1 4.0 4.1 1.9 4.2 2.6 4.2 1.6 2.0 2.2 4.3 1.5
0
[Binding site full-atom RMSD matrix]







[show 3D visualization]

[ENTRY 2D visualization]

L C X E | Background Color: | Anaglyph Stereo:

loading...