If you see this message after the page is completely loaded, then JavaScript is not supported or disabled in your browser. Please consider enabling JavaScript for this site.

DCK_HUMAN_3_260

Deoxycytidine kinase [DCK/DGK family]

Composition of the binding site

Protein chains monomer
A1 (DCK_HUMAN):29:31, 34, 35, 53, 55, 56, 58:60, 80, 82, 83, 85:87, 89, 90, 96, 97, 100, 104, 127, 128, 133, 137, 140, 141, 144:146, 189, 192, 194:201, 203, 204, 207, 20829:31, 34, 35, 53, 55, 56, 58:60, 80, 82, 83, 85:87, 89, 90, 96, 97, 100, 104, 127, 128, 133, 137, 140, 141, 144:146, 189, 192, 194:201, 203, 204, 207, 208
Cofactors (cF):adp/udp

Full PDB list

1p5z, 1p60, 1p61, 1p62, 2a2z, 2a30, 2a7q, 2no0, 2no1, 2no6, 2no7, 2no9, 2noa, 2qrn, 2qro, 2zi3, 2zi4, 2zi5, 2zi6, 2zi7, 2zi9, 2zia, 3hp1, 3ipx, 3ipy, 3kfx, 3mjr, 3qej, 3qen, 3qeo, 4jlj, 4jlk, 4jlm, 4jln, 4kcg, 4l5b, 4q18, 4q19, 4q1a, 4q1b, 4q1c, 4q1d, 4q1e, 4q1f (redundant Pocketome entry)

Pocket contact map

[download in TSV format]
   
PDB.ch
   
ligand
A1 cF
I
3
0
A
3
1
K
3
4
S
3
5
E
5
3
V
5
5
A
5
6
W
5
8
C
5
9
L
8
2
M
8
5
Y
8
6
P
8
9
E
9
0
F
9
6
Q
9
7
A
1
0
0
R
1
0
4
E
1
2
7
R
1
2
8
D
1
3
3
F
1
3
7
N
1
4
0
L
1
4
1
S
1
4
4
E
1
4
5
C
1
4
6
R
1
9
2
R
1
9
4
E
1
9
6
E
1
9
7
G
1
9
9
I
2
0
0
P
2
0
1
Y
2
0
4
K
2
0
7
[1]2zi5.b 3l118 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]2zi5.d 3l118 . . . . . . . . - . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]2zi6.a 3d118 . . . . . . . . - . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]3ipy.a b87,b87,mlt67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]3mjr.a ac216 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]3mjr.d ac216 . . . . . . - . - . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]3qej.a none . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]3qen.b 5bt17 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]3qeo.b llt17 . . . . . . . . S . . . . . . . . M . . A . . . . . S . . . . . . . . . udp
[1]4jlj.a 1nm,1nm54 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4jlk.a 1no,1no56 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4jlm.a 1nn,1nn58 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4jlm.b 1nn29 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4jln.a 18v30 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4kcg.b 1qc34 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4l5b.b 1ux32 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q18.b 2xj,2xj64 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q19.b 2xl27 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q1a.b 2xz30 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q1b.a 2y032 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q1c.b 2xm32 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q1d.b 2y131 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q1e.a 2y7,2y858 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[1]4q1f.a 2xn33 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[2]1p5z.b ar3,mg18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . adp
[2]1p60.b dcz16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . adp
[2]1p62.b geo,mg19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . adp
[2]2a2z.b dcz,mg17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . udp
[2]2a7q.a cfb,mg21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . adp
[2]2no0.b geo18 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2no1.a dcz16 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2no6.b etv16 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2no7.b ldc16 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2no9.a ltt15 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2noa.a 3tc15 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2qrn.b dcm20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . udp
[2]2qro.a d5m22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . udp
[2]2qro.c d5m,mg23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . udp
[2]2zi3.b 3d118 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2zi4.a 3l1,mg19 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp
[2]2zi7.b gng19 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[2]2zia.a cl919 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . udp
[2]3hp1.a llt17 . . . . . . . . . . . . . . . . . M . . A . . . . . . . . . . . . . . . adp
[2]3ipx.a b86,mg18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . adp
[2]3kfx.a mcy17 . . . . . . . . S . . . . . . . . . . . . . . . . . S . . . . . . . . . adp

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Site contact map

[download in TSV format]
   
PDB.ch
A1 cF
N
2
9
I
3
0
A
3
1
K
3
4
S
3
5
E
5
3
V
5
5
A
5
6
W
5
8
C
5
9
N
6
0
N
8
0
L
8
2
Q
8
3
M
8
5
Y
8
6
E
8
7
P
8
9
E
9
0
F
9
6
Q
9
7
A
1
0
0
R
1
0
4
E
1
2
7
R
1
2
8
D
1
3
3
F
1
3
7
N
1
4
0
L
1
4
1
S
1
4
4
E
1
4
5
C
1
4
6
I
1
8
9
R
1
9
2
R
1
9
4
N
1
9
5
E
1
9
6
E
1
9
7
Q
1
9
8
G
1
9
9
I
2
0
0
P
2
0
1
E
2
0
3
Y
2
0
4
K
2
0
7
L
2
0
8
[1]2zi5.b . . . . . . . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . * . . . * . . * * . udp
[1]2zi5.d . . . . . * . . . - - . . . . * . . . . . . . . * . . . . . . S . . . . . . . . . . . . . . udp
[1]2zi6.a . . . . . * . . . - - . * . . * . . . . . . . . * . . . . . . S . . . . * . . . . . . . . . udp
[1]3ipy.a . . . . . * * . . . . . . . . * . . . . . . . . . . . . . . . . . . * . . * . . . . . . . .
[1]3mjr.a . . . . . . . . . S . . . . . * . . . . * . . . . . . . . . . S . . . . * * . . . . . . . . udp
[1]3mjr.d . * . . . . . - . - - . . . . * . . . . * . . . . * . . . * . S . . . . * * . . . . . * . . udp
[1]3qej.a . . . . . * . . . S . . . . . * . . . . * . . . . . . . . . . S . . * . * . . . . . . . . . udp
[1]3qen.b . . . . . * . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . * . . . * . . * * . udp
[1]3qeo.b . . . . . * . . . S . . . . . * . . . . . . M . . A . . . . . S . . * . . . . . . . . . . . udp
[1]4jlj.a . . . . . * . . . S . . . . . . . . . . . . . . * . . . . . . S . . . . . . . . . . . . . . udp
[1]4jlk.a . . . . . * . . . S . . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . udp
[1]4jlm.a . . . . . * . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . . . . . . . . . * . udp
[1]4jlm.b . . . . . * . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . udp
[1]4jln.a . . . . . * . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . . . . . * . * . * . udp
[1]4kcg.b . . . . . * . . . S - . . . . * . . . . . . . . * . . . . . . S . . . . * . . . * . . . . . udp
[1]4l5b.b . . . . . * . . . S - . . . . * . . . . . . . . . . . . . . . S . . . . . . . . * . . * . . udp
[1]4q18.b . . . . . * . . . S - . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . udp
[1]4q19.b . . . . . * . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . . . . . * . . * * . udp
[1]4q1a.b . . . . . * . . . S . . . . . * . . . . . . . . . . . . . . . S . . . . . . . . * . . . * . udp
[1]4q1b.a . * . . . * . . . S - . . . . * . . . . . . . . . . . . . . . S . . . . . * . . . . . . . . udp
[1]4q1c.b . . . . . * . . . S - . . . . * . . . . . . . . . . . . . . . S . . . . * . . . * . . . * . udp
[1]4q1d.b . . . . . * . . . S . . . . . * . . . . . . . . * . . . . . . S . . . . . . . . * . . . . . udp
[1]4q1e.a . . . . . * . . . S . . . . . . . . . . . . . . . . . . . . . S . . . . . . . . . . . . . . udp
[1]4q1f.a . . . . . * . . . S . . . . . * . . . . . . . . * . . . . . . S . . . . * * . . . . . * . . udp
[2]1p5z.b . . . . . * . . . . . . * . * * . . . . . . . . . . . . . . . . . . * . * * . . * . . * * . adp
[2]1p60.b . . . . . * . . . . . . . . * * . . * . . . . . . . . . . . . . . . * . * * . . * . . . . . adp
[2]1p62.b . . . . . * . . . . . . * . * * . . . . . . . . . . . . . . . . . . * . * * . . * . . * . . adp
[2]2a2z.b . . . . . * . . . . . . * . * * . . . . * . . . . . . . . . . . . . * . * * . . * . . . . . udp
[2]2a7q.a . . . . . . . . . . . . . . . * . . . . . . . . * . . . . . . . . . * . * * . * * . . . . . adp
[2]2no0.b . . . . . * . . . S . . . . * * . . * . . . . . . . . . . . . S . . * . * * . * * . . . . . adp
[2]2no1.a . . . . . * . . . S . . . . * * . . . . . . . . . . . . . . . S . . * . * * . * * . . * * . adp
[2]2no6.b . * . . . * . . . S . . . . * * . . * . . . . . . . . . . . . S . . * . * * . . * . . * . . adp
[2]2no7.b . * . . . * . . . S . . . . * * . . * . . . . . . . . . . . . S . . * . * * . * * . . * . . adp
[2]2no9.a . . . . . * . . . S . . . . * * . . . . . . . . * . . . . . . S . . * . * * . . * . . . * . adp
[2]2noa.a . * . . . * . . . S . . . . * * . . . . . . . . * . . . . . . S . . * . * * . . * . . . . . adp
[2]2qrn.b . . . . . * . . . . . . . . * * . . . . * . . . . . . . . . . . . . * . * * . * * . . . . . udp
[2]2qro.a . . . . . * . . . . . . . . * * . . . . . . . . . . . . . . . . . . * . * * . . * . . . . . udp
[2]2qro.c . . . . . * . . . . . . . . * * . . . . . . . . . . . . . . . . . . * . * * . . * . . . . . udp
[2]2zi3.b . . . . . . . . . S . . . . * * . . . . . . . . . . . . . . . S . . * . * * . . * . . . . . adp
[2]2zi4.a . * . . . . . . . S . . . . * * . . . . . . . . * . . . . . . S . . * . * * . * * . . * . . adp
[2]2zi7.b . . . . . * . . . S . . . . * * . . . . . . * . * . . . . . . S . . * . * * . . * . . . * . udp
[2]2zia.a . . . . . . . . . S . . . . * * . . . . . . . . * . . . . . . S . . * . * * . * * . . . . . udp
[2]3hp1.a . . . . . * . . . . . . . . . * . . * . . . M . * A . . . . . . . . * . * * . * * . . * * . adp
[2]3ipx.a . . . . . . . . . . . . * . * * . . * . . . . . * . . . . . . . . . * . * * . * * . . * . . adp
[2]3kfx.a . . . . . . . . . S . . . . . * . . . . . . . . . . . . . . . S . . * . * * . . * . . * * . adp

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X X X X X  clash
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Pocket-ligand steric compatibility

Ligands (x) vs pockets (y) colored by number of steric clashes

zoom: [−] [+]; [view as image]; [download as text]

pocketligand
≥10
9
8
7
6
5
4
3
2
1
0
2zi5.b:3l1
2zi5.d:3l1
2zi6.a:3d1
3ipy.a:b87,mlt
3mjr.a:ac2
3mjr.d:ac2
3qej.a is apo
3qen.b:5bt
3qeo.b:llt
4jlj.a:1nm
4jlk.a:1no
4jlm.a:1nn
4jlm.b:1nn
4jln.a:18v
4kcg.b:1qc
4l5b.b:1ux
4q18.b:2xj
4q19.b:2xl
4q1a.b:2xz
4q1b.a:2y0
4q1c.b:2xm
4q1d.b:2y1
4q1e.a:2y7,2y8
4q1f.a:2xn
1p5z.b:ar3,mg
1p60.b:dcz
1p62.b:geo,mg
2a2z.b:dcz,mg
2a7q.a:cfb,mg
2no0.b:geo
2no1.a:dcz
2no6.b:etv
2no7.b:ldc
2no9.a:ltt
2noa.a:3tc
2qrn.b:dcm
2qro.a:d5m
2qro.c:d5m,mg
2zi3.b:3d1
2zi4.a:3l1,mg
2zi7.b:gng
2zia.a:cl9
3hp1.a:llt
3ipx.a:b86,mg
3kfx.a:mcy
[1] 2zi5.b
0
0 0.1 2.8 1.0 1.1 - 0 0.2 4.1 4.4 4.6 0.4 0.4 0.4 0.7 5.4 0.5 0.6 1.4 0.6 0.5 5.6 1.7 0.3 0.1 0.2 0.3 0.5 0.2 0.2 0.3 0 0 0.3 0.6 0.9 0.9 0.4 0.5 0.4 0.5 0.6 0.2 0.3
[1] 2zi5.d 0
0
0 2.3 1.3 1.4 - 0 0.1 4.8 4.8 5.0 0.1 0.2 0.5 0.4 4.7 0.3 0.3 0.2 0.4 0.4 5.2 0.2 0.4 0.2 0.1 0.4 0.4 0.2 0.2 0.3 0.1 0 0.2 0.7 0.8 1.2 0.4 0.5 0.4 0.5 0.4 0.3 0.2
[1] 2zi6.a 0.1 0.2
0.1
3.3 1.4 1.1 - 0.3 0.1 6.0 6.5 6.2 0.4 0.6 0.3 0.9 7.4 0.5 0.8 0.7 0.8 0.9 6.9 0.5 0.5 0.3 0.6 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.7 0.8 1.0 0.4 0.2 0.4 0.6 0.4 0.4 0.5
[1] 3ipy.a 0.2 0.1 0.5
0.1
0.8 0.9 - 0.5 0.1 3.7 3.7 4.0 0.1 0.1 0.2 0.1 3.4 0 0.1 0.5 0.1 0.1 4.1 0.1 1.0 0.6 1.0 0.5 0.7 0.6 0.6 0.3 0.1 0.3 0.6 0.7 1.0 1.4 0.9 1.1 0.7 1.2 0.6 0.8 0.8
[1] 3mjr.a 0.2 0.2 0.2 1.9
0.4
0.5 - 0.1 0.2 6.9 7.2 6.7 0.5 0.6 0.5 0.6 7.5 0.6 0.6 1.2 0.8 0.5 7.1 0.2 0.1 0 0.1 0 0.3 0 0 0.1 0.1 0.1 0.1 0.6 0.9 0.6 0.4 0.4 0.3 0.7 0.5 0.1 0.2
[1] 3mjr.d 1.1 1.1 1.0 6.3 1.0
0.9
- 0.8 0.8 7.0 6.8 7.5 1.4 1.6 1.4 2.4 8.9 1.4 1.7 3.2 2.0 1.7 7.8 3.8 0.9 0.6 0.6 0.7 1.1 0.6 0.7 1.0 0.7 0.8 0.8 1.3 2.6 2.2 1.7 1.4 1.1 1.6 1.1 0.7 0.6
[1] 3qej.a 0.3 0.3 0.1 1.3 0.9 1.1
-
0.2 0.1 4.0 4.1 4.0 0.6 0.5 0.7 0.7 4.1 0.4 0.6 0.6 0.6 0.8 5.1 0.4 0.5 0.3 0.4 0.5 0.6 0.3 0.3 0.4 0.4 0.3 0.4 0.5 0.7 0.7 0.7 0.9 0.7 1.2 0.6 0.3 0.5
[1] 3qen.b 0.1 0.3 0.1 2.9 1.1 1.2 -
0.2
0.1 5.8 6.3 6.5 0.5 0.3 0.4 0.5 6.3 0.3 0.4 1.5 0.6 0.6 6.4 1.1 0.2 0.1 0.2 0.2 0.4 0.1 0.1 0.1 0 0.1 0.3 0.6 0.7 0.6 0.2 0.5 0.2 0.9 0.3 0.2 0.3
[1] 3qeo.b 0.3 0.5 0.1 2.4 0.7 1.4 - 0.5
0.2
4.0 4.2 3.9 0.7 0.7 0.8 1.1 4.6 0.5 1.2 1.0 1.3 0.7 4.7 1.0 0.7 0.2 0.4 0.2 0.6 0.2 0.2 0.5 0.3 0.3 0.5 0.6 0.6 0.5 0.4 0.9 0.2 0.8 0.7 0.4 0.8
[1] 4jlj.a 0.1 0.1 0.2 0.5 0.9 0.8 - 0.4 0.4
0.1
0.3 0.5 0.1 0.3 0.1 0.4 0.4 0.2 0.4 0.3 0.4 0.3 0.6 0.3 0.5 0.4 0.4 0.4 0.7 0.4 0.3 0.5 0.1 0.2 0.6 0.9 1.0 1.1 0.7 0.8 0.6 1.0 0.5 0.3 0.4
[1] 4jlk.a 0 0 0.1 1.2 0.8 1.1 - 0.2 0.1 0.2
0
0.2 0 0 0 0.1 0.7 0 0 0.2 0 0.1 0.4 0.8 0.7 0.4 0.6 0.6 0.5 0.4 0.4 0.5 0.2 0.2 0.3 0.9 0.7 0.9 0.4 0.5 0.5 1.0 0.4 0.4 0.5
[1] 4jlm.a 0 0.1 0 0.8 0.8 1.3 - 0.2 0 2.3 2.3
1.7
0.1 0 0 0 2.5 0.1 0 1.0 0 0 2.3 0.5 0.5 0.4 0.4 0.4 0.3 0.4 0.4 0.1 0.1 0.1 0.3 0.6 0.6 0.7 0.5 0.4 0.4 0.8 0.4 0.3 0.5
[1] 4jlm.b 0.1 0.1 0.1 1.8 0.5 1.2 - 0.2 0.1 3.2 3.1 3.5
0.1
0 0 0.5 4.1 0 0.2 0.1 0.3 0.1 4.1 0.3 0.5 0.3 0.4 0.4 0.5 0.3 0.4 0.4 0.1 0.1 0.3 0.7 0.5 0.7 0.7 0.6 0.5 0.9 0.4 0.5 0.4
[1] 4jln.a 0.1 0 0.1 3.5 1.0 1.6 - 0.3 0.1 4.9 5.0 5.3 0
0
0.4 0.1 5.8 0.1 0 1.6 0 0.2 5.0 1.7 0.5 0.4 0.5 0.5 0.3 0.4 0.4 0.3 0.2 0.1 0.3 0.5 0.7 0.7 0.5 0.5 0.3 1.1 0.4 0.5 0.7
[1] 4kcg.b 0 0 0 2.9 0.7 1.5 - 0 0 4.4 4.8 5.3 0.2 0.1
0.1
0.3 5.4 0.2 0.1 0.1 0.1 0.2 5.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.4 0.1 0.1 0.1 0.1 0.5 0.7 0.7 0.4 0.4 0.4 0.6 0.4 0.3 0.4
[1] 4l5b.b 0.1 0 0.2 3.1 0.8 1.5 - 0.2 0.1 4.7 5.0 5.3 0.2 0.2 0
0.1
5.0 0.2 0.1 0.4 0.2 0.2 5.5 0.5 0.5 0.4 0.5 0.3 0.7 0.4 0.2 0.1 0.2 0.1 0.1 0.5 0.6 0.6 0.3 0.5 0.3 0.9 0.6 0.3 0.6
[1] 4q18.b 0.1 0.2 0.2 1.3 0.8 1.4 - 0.3 0.2 0.5 0.4 1.2 0 0.2 0 0.5
0.1
0.3 0.2 0.7 0.4 0.1 0.6 0.5 0.5 0.3 0.4 0.4 0.7 0.3 0.3 0.3 0.3 0.2 0.4 0.7 0.9 0.7 0.6 0.4 0.6 0.6 0.5 0.4 0.4
[1] 4q19.b 0 0 0.1 2.9 0.6 1.4 - 0.1 0.1 5.2 5.1 5.7 0.1 0 0.3 0 5.9
0.1
0 1.2 0.1 0.2 4.9 1.2 0.5 0.4 0.6 0.5 0.4 0.4 0.4 0.1 0.1 0.1 0.3 0.5 0.7 0.7 0.6 0.7 0.4 0.9 0.4 0.5 0.4
[1] 4q1a.b 0 0 0.2 3.5 0.5 1.4 - 0.2 0.1 4.6 5.0 5.4 0 0.1 0.1 0 5.3 0.1
0
1.0 0.1 0 5.1 1.1 0.5 0.4 0.4 0.3 0.5 0.4 0.2 0.1 0.2 0.1 0.1 0.3 0.4 0.6 0.3 0.5 0.3 0.7 0.6 0.3 0.4
[1] 4q1b.a 0.2 0.1 0.2 2.6 0.8 1.8 - 0.5 0.4 3.6 3.6 4.4 0.1 0.2 0.3 0.5 3.5 0.3 0.5
0
0.4 0.2 4.1 0.3 0.5 0.3 0.4 0.3 0.6 0.4 0.3 0.4 0.1 0.2 0.4 0.8 0.8 0.9 0.5 0.7 0.5 1.1 0.4 0.5 0.4
[1] 4q1c.b 0 0.1 0.2 2.7 0.9 1.6 - 0.3 0.1 4.2 4.9 5.5 0 0 0 0 5.4 0 0 1.3
0.1
0.1 5.2 1.0 0.5 0.4 0.6 0.5 0.7 0.4 0.4 0.3 0.1 0.1 0.3 0.7 0.6 0.6 0.6 0.5 0.5 0.9 0.4 0.5 0.5
[1] 4q1d.b 0.2 0.1 0.3 3.1 0.9 1.4 - 0.2 0.1 4.1 3.7 4.9 0.2 0.1 0.2 0.3 4.9 0.1 0.2 0.2 0.2
0.1
4.7 0.3 0.4 0.3 0.4 0.3 0.6 0.3 0.3 0.1 0.1 0.1 0.3 0.9 1.0 1.0 0.5 0.8 0.5 0.9 0.3 0.4 0.5
[1] 4q1e.a 0.1 0.1 0.1 0.9 0.4 1.0 - 0.2 0.1 0.1 0 0.3 0 0 0 0.2 0.6 0 0 0.3 0 0.1
0
0.2 0.5 0.4 0.6 0.4 0.3 0.5 0.4 0.4 0.1 0.2 0.4 0.7 0.7 0.8 0.5 0.7 0.3 0.9 0.4 0.4 0.2
[1] 4q1f.a 0 0 0.1 3.6 0.9 1.2 - 0.2 0.1 3.8 4.1 4.4 0.4 0.3 0.5 0.3 4.7 0.4 0.4 0.6 0.3 0.4 4.8
0
0.5 0.4 0.4 0.5 0.3 0.4 0.4 0.3 0.2 0.1 0.3 1.1 0.8 1.0 0.5 0.7 0.5 0.9 0.8 0.5 0.6
[2] 1p5z.b 3.2 2.8 1.3 7.7 1.9 1.4 - 1.7 1.2 12 12 13 4.3 3.8 4.6 4.7 12 4.0 4.5 5.2 3.9 4.6 13 4.2
0.2
0.1 0.2 0.2 0.7 0.1 0.2 0.2 0.1 0 0 0.7 1.0 0.9 0.6 0.8 0.6 0.9 0.3 0.2 0.2
[2] 1p60.b 2.8 2.6 1.8 8.2 1.7 1.6 - 1.7 1.4 11 11 13 4.3 3.4 4.3 3.9 12 3.5 4.0 4.1 3.5 3.4 13 3.5 0.2
0
0.2 0.1 0.4 0 0.1 0.1 0.1 0 0 0.9 1.0 1.1 0.4 0.6 0.3 0.7 0.5 0.2 0.1
[2] 1p62.b 2.8 2.6 1.6 7.2 1.6 1.4 - 1.5 1.4 10 11 12 4.1 3.6 4.1 4.4 10 3.8 3.6 4.8 3.6 4.3 12 4.0 0.3 0.2
0.3
0.2 0.7 0.1 0.1 0.2 0.1 0 0 0.6 1.1 0.8 0.6 0.6 0.6 0.9 0.3 0.2 0.2
[2] 2a2z.b 3.2 2.8 1.8 8.1 1.9 1.7 - 1.7 2.1 11 12 14 4.8 4.1 4.9 4.7 12 3.9 4.2 4.9 4.4 4.7 14 3.7 0.7 0 0.6
0.1
0.7 0 0 0.4 0.3 0.2 0.3 0.8 1.1 1.6 0.4 0.9 0.4 0.9 0.5 0.7 0.2
[2] 2a7q.a 3.0 2.4 1.7 8.0 1.4 1.4 - 1.8 1.1 11 11 13 3.9 3.2 4.0 4.0 12 3.3 4.2 4.7 3.8 4.1 12 3.7 0.4 0.3 0.4 0.1
0.1
0.3 0.3 0.2 0.3 0.2 0.3 1.3 1.2 1.5 0.4 0.3 0.1 0.4 0.8 0.4 0.6
[2] 2no0.b 2.6 2.8 1.8 8.3 1.6 1.7 - 1.6 1.2 11 11 13 3.9 3.4 4.5 3.7 13 3.7 4.0 4.0 3.4 3.5 12 3.9 0.1 0.1 0.1 0.2 0.8
0
0.1 0.2 0.1 0 0.2 0.9 1.3 1.1 0.7 0.6 0.7 0.8 0.7 0.1 0.3
[2] 2no1.a 3.0 2.7 1.5 9.2 1.8 1.7 - 1.6 1.4 13 12 15 4.3 3.7 4.7 4.5 13 3.7 4.1 5.0 3.8 4.3 14 5.6 0 0.1 0 0.1 0.7 0
0.1
0.3 0 0.1 0.1 0.9 1.2 1.1 0.6 0.5 0.7 0.7 0.5 0.1 0.2
[2] 2no6.b 2.7 2.2 1.7 8.8 1.5 1.8 - 1.2 0.9 10 10 13 3.7 3.2 3.8 3.6 10 3.3 3.5 4.2 2.9 3.3 12 3.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0
0.2 0 0 1.1 1.2 1.1 0.5 0.7 0.2 0.9 0.5 0.2 0.3
[2] 2no7.b 3.4 2.9 1.6 9.8 1.5 2.0 - 1.6 1.5 12 14 15 4.5 3.8 4.8 4.5 13 4.0 4.6 4.8 4.6 4.6 14 4.6 0.2 0.2 0.4 0.1 0.5 0.2 0.2 0
0.3
0.1 0.1 0.9 1.2 1.1 0.7 0.8 0.7 0.9 0.5 0.2 0.4
[2] 2no9.a 3.2 2.8 1.9 8.4 1.6 1.8 - 1.5 1.5 11 12 13 4.4 3.5 3.9 4.2 11 3.7 3.7 5.1 4.0 3.8 13 4.2 0.3 0.1 0.2 0.1 0.3 0.2 0.1 0 0.2
0
0 1.2 1.1 1.0 0.8 0.6 0.3 0.8 0.5 0.3 0.2
[2] 2noa.a 2.7 2.4 1.5 7.7 1.8 1.8 - 1.3 0.9 12 11 13 3.8 3.4 3.9 4.0 11 3.5 3.8 5.1 4.1 4.0 12 3.8 0.2 0 0.2 0 0.5 0.1 0.1 0 0.2 0
0
1.0 1.3 1.1 0.6 0.5 0.4 0.8 0.5 0.1 0.2
[2] 2qrn.b 2.6 2.2 1.5 7.5 1.2 1.5 - 1.3 1.2 11 12 13 3.6 3.2 3.7 3.6 11 3.2 3.7 3.8 3.8 3.5 13 3.4 0.3 0.1 0.3 0.2 0.8 0 0.1 0.1 0.1 0.1 0.1
0.3
0.7 0.8 0.5 0.9 0.4 0.9 0.4 0.2 0.2
[2] 2qro.a 2.3 2.3 1.2 7.6 1.4 1.4 - 1.4 1.1 12 12 15 3.9 3.5 3.7 3.8 12 3.6 3.7 4.1 3.5 3.6 14 3.5 0.3 0.1 0.2 0.2 0.7 0.1 0.1 0.2 0.2 0.3 0.3 0.3
0.5
0.4 0.5 0.8 0.2 0.7 0.8 0.2 0.4
[2] 2qro.c 2.3 2.3 1.2 7.6 1.4 1.5 - 1.4 1.1 12 12 15 3.9 3.3 3.7 4.1 12 3.8 3.7 4.1 3.7 3.6 14 3.5 0.3 0.2 0.3 0.2 0.7 0.2 0.1 0.2 0.2 0.3 0.3 0.4 0.5
0.4
0.5 0.8 0.2 0.7 0.8 0.3 0.4
[2] 2zi3.b 2.9 2.6 1.7 7.8 1.4 1.7 - 1.3 1.4 11 12 13 4.3 3.4 4.0 4.1 12 3.4 3.6 4.3 3.7 3.6 12 3.7 0.4 0.2 0.3 0 0.2 0.1 0.2 0.3 0.1 0.1 0.2 0.9 1.0 0.9
0.2
0.1 0.2 0.3 0.6 0.3 0.5
[2] 2zi4.a 3.1 2.8 1.3 8.7 1.4 1.7 - 1.2 1.7 12 12 15 4.0 3.5 4.8 4.1 12 3.7 4.2 5.0 3.6 4.3 14 4.6 0.4 0.1 0.5 0.2 0.4 0.2 0.1 0.1 0.3 0 0 1.1 0.8 1.7 0.1
0.3
0.3 0.5 0.6 0.5 0.4
[2] 2zi7.b 2.5 2.8 2.0 8.4 1.8 2.1 - 1.9 1.3 11 11 13 3.7 3.2 4.4 4.0 11 3.3 3.8 5.2 3.4 3.7 12 3.9 0.7 0.2 0.8 0.2 0.4 0.4 0.4 0.5 0.4 0.1 0.2 1.3 0.9 1.8 0.2 0.5
0.2
0.5 1.6 1.0 1.0
[2] 2zia.a 2.9 2.7 1.5 8.4 1.3 1.5 - 1.3 1.4 12 13 15 3.9 3.5 4.5 4.1 12 3.6 3.9 4.4 3.5 4.2 14 4.0 0.3 0 0.5 0.1 0.3 0.2 0.2 0.3 0.2 0.2 0.2 1.0 0.8 1.4 0.2 0.1 0.1
0.2
0.6 0.4 0.2
[2] 3hp1.a 2.7 2.6 1.8 7.6 1.5 1.3 - 1.6 1.8 13 12 15 3.8 3.7 4.8 4.3 13 4.2 4.1 5.1 3.7 3.9 13 4.4 0.2 0.1 0.3 0.3 1.2 0.2 0.2 0.1 0.2 0.2 0.2 1.4 1.8 2.2 0.6 1.1 1.1 1.3
0
0.3 0.1
[2] 3ipx.a 3.2 2.8 1.4 8.0 1.5 1.3 - 1.5 1.4 12 12 14 4.5 4.0 5.0 4.9 12 4.1 4.6 5.2 4.7 4.7 13 4.3 0.1 0.1 0.1 0.1 0.7 0.1 0.2 0.3 0.3 0 0.1 0.9 1.0 1.2 0.6 0.7 0.6 0.9 0.7
0.1
0.3
[2] 3kfx.a 2.7 2.6 1.7 7.8 1.4 1.5 - 1.5 1.2 12 12 14 4.3 3.5 4.4 4.1 13 3.8 4.2 4.8 4.1 3.4 14 4.7 0.1 0.1 0.2 0.1 0.6 0.1 0 0 0.1 0 0 0.8 1.1 1.0 0.4 0.6 0.5 0.8 0.2 0.2
0
[Pocket-ligand steric clashes matrix]

Pocket clash dissimilarity (2 clusters)

Pockets (x) vs pockets (y) colored by ligand clash profile difference

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥1.
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
2zi5.b
2zi5.d
2zi6.a
3ipy.a
3mjr.a
3mjr.d
3qej.a
3qen.b
3qeo.b
4jlj.a
4jlk.a
4jlm.a
4jlm.b
4jln.a
4kcg.b
4l5b.b
4q18.b
4q19.b
4q1a.b
4q1b.a
4q1c.b
4q1d.b
4q1e.a
4q1f.a
1p5z.b
1p60.b
1p62.b
2a2z.b
2a7q.a
2no0.b
2no1.a
2no6.b
2no7.b
2no9.a
2noa.a
2qrn.b
2qro.a
2qro.c
2zi3.b
2zi4.a
2zi7.b
2zia.a
3hp1.a
3ipx.a
3kfx.a
[1] 2zi5.b
0
.13 .15 .17 .22 .23 .13 .10 .14 .17 .18 .11 .11 .11 .10 .12 .14 .10 .08 .13 .10 .12 .18 .10 .30 .31 .27 .32 .29 .34 .33 .30 .36 .29 .28 .30 .33 .33 .31 .34 .31 .37 .35 .35 .31
[1] 2zi5.d .13
0
.14 .17 .25 .27 .14 .15 .15 .16 .18 .14 .08 .14 .09 .12 .16 .14 .14 .14 .14 .10 .18 .12 .30 .29 .25 .30 .28 .31 .33 .30 .33 .28 .27 .27 .30 .30 .30 .32 .32 .32 .35 .33 .31
[1] 2zi6.a .15 .14
0
.20 .18 .21 .13 .12 .13 .20 .23 .18 .14 .21 .14 .17 .20 .18 .18 .17 .16 .17 .21 .13 .25 .25 .20 .25 .23 .27 .30 .25 .30 .25 .24 .22 .26 .25 .24 .28 .28 .28 .30 .28 .27
[1] 3ipy.a .17 .17 .20
0
.22 .29 .12 .18 .12 .15 .17 .14 .12 .20 .17 .14 .17 .18 .18 .13 .19 .15 .16 .13 .33 .32 .29 .31 .32 .34 .37 .34 .37 .34 .32 .31 .34 .33 .34 .38 .36 .37 .37 .36 .35
[1] 3mjr.a .22 .25 .18 .22
0
.18 .16 .18 .18 .23 .25 .20 .21 .28 .24 .23 .24 .25 .24 .24 .23 .25 .23 .19 .32 .29 .30 .30 .29 .31 .33 .33 .35 .31 .32 .27 .30 .30 .31 .34 .34 .32 .34 .33 .31
[1] 3mjr.d .23 .27 .21 .29 .18
0
.22 .22 .23 .27 .28 .26 .24 .28 .21 .23 .28 .24 .22 .22 .25 .23 .28 .20 .30 .32 .30 .31 .30 .32 .30 .32 .32 .30 .31 .29 .33 .33 .33 .34 .38 .36 .34 .32 .31
[1] 3qej.a .13 .14 .13 .12 .16 .22
0
.14 .06 .14 .15 .11 .10 .18 .13 .14 .15 .15 .16 .13 .15 .12 .14 .10 .33 .32 .28 .32 .32 .34 .37 .32 .36 .33 .31 .29 .33 .33 .34 .38 .37 .38 .35 .37 .34
[1] 3qen.b .10 .15 .12 .18 .18 .22 .14
0
.16 .21 .21 .15 .11 .12 .13 .15 .19 .11 .12 .18 .09 .13 .20 .12 .23 .25 .20 .26 .23 .27 .25 .24 .30 .22 .21 .23 .27 .27 .25 .29 .25 .31 .27 .28 .23
[1] 3qeo.b .14 .15 .13 .12 .18 .23 .06 .16
0
.15 .17 .13 .12 .20 .15 .16 .16 .17 .17 .12 .15 .16 .15 .12 .33 .33 .29 .33 .33 .35 .38 .33 .37 .34 .32 .29 .33 .33 .34 .38 .37 .38 .37 .37 .35
[1] 4jlj.a .17 .16 .20 .15 .23 .27 .14 .21 .15
0
.05 .10 .12 .22 .18 .18 .06 .22 .20 .14 .22 .15 .03 .15 .42 .42 .38 .42 .41 .43 .46 .41 .46 .41 .40 .39 .43 .43 .42 .46 .45 .46 .47 .45 .43
[1] 4jlk.a .18 .18 .23 .17 .25 .28 .15 .21 .17 .05
0
.11 .12 .21 .18 .15 .06 .20 .19 .14 .19 .15 .04 .16 .41 .41 .36 .40 .40 .43 .45 .40 .45 .41 .39 .38 .41 .41 .42 .46 .45 .46 .47 .45 .43
[1] 4jlm.a .11 .14 .18 .14 .20 .26 .11 .15 .13 .10 .11
0
.09 .15 .14 .15 .10 .15 .13 .11 .14 .13 .08 .12 .36 .38 .32 .40 .36 .41 .40 .37 .43 .36 .35 .36 .39 .39 .38 .41 .40 .43 .42 .41 .38
[1] 4jlm.b .11 .08 .14 .12 .21 .24 .10 .11 .12 .12 .12 .09
0
.12 .10 .10 .12 .12 .12 .10 .13 .08 .12 .08 .31 .31 .26 .31 .31 .33 .36 .32 .35 .31 .30 .28 .32 .31 .32 .36 .36 .36 .37 .35 .33
[1] 4jln.a .11 .14 .21 .20 .28 .28 .18 .12 .20 .22 .21 .15 .12
0
.08 .10 .20 .07 .08 .16 .08 .11 .22 .12 .26 .29 .23 .31 .28 .31 .29 .28 .33 .26 .25 .27 .31 .31 .30 .32 .32 .35 .30 .32 .27
[1] 4kcg.b .10 .09 .14 .17 .24 .21 .13 .13 .15 .18 .18 .14 .10 .08
0
.05 .17 .06 .06 .12 .07 .05 .18 .08 .27 .28 .22 .28 .26 .28 .30 .26 .30 .26 .25 .25 .29 .29 .28 .31 .32 .31 .31 .30 .28
[1] 4l5b.b .12 .12 .17 .14 .23 .23 .14 .15 .16 .18 .15 .15 .10 .10 .05
0
.17 .07 .06 .12 .08 .06 .18 .08 .27 .28 .23 .29 .28 .29 .32 .27 .30 .27 .26 .25 .29 .28 .30 .32 .34 .33 .33 .30 .29
[1] 4q18.b .14 .16 .20 .17 .24 .28 .15 .19 .16 .06 .06 .10 .12 .20 .17 .17
0
.18 .17 .14 .19 .15 .05 .15 .39 .40 .35 .41 .38 .43 .43 .39 .45 .39 .38 .38 .42 .41 .39 .43 .43 .45 .45 .43 .41
[1] 4q19.b .10 .14 .18 .18 .25 .24 .15 .11 .17 .22 .20 .15 .12 .07 .06 .07 .18
0
.05 .15 .06 .08 .21 .10 .23 .27 .20 .28 .26 .28 .27 .25 .29 .23 .22 .24 .28 .28 .27 .28 .29 .32 .28 .28 .24
[1] 4q1a.b .08 .14 .18 .18 .24 .22 .16 .12 .17 .20 .19 .13 .12 .08 .06 .06 .17 .05
0
.14 .07 .09 .20 .08 .25 .29 .23 .31 .27 .31 .29 .27 .30 .25 .25 .26 .31 .30 .28 .30 .32 .34 .32 .30 .27
[1] 4q1b.a .13 .14 .17 .13 .24 .22 .13 .18 .12 .14 .14 .11 .10 .16 .12 .12 .14 .15 .14
0
.15 .11 .14 .10 .34 .33 .29 .33 .34 .35 .37 .34 .38 .33 .32 .30 .33 .33 .35 .37 .38 .38 .39 .37 .36
[1] 4q1c.b .10 .14 .16 .19 .23 .25 .15 .09 .15 .22 .19 .14 .13 .08 .07 .08 .19 .06 .07 .15
0
.10 .22 .09 .25 .28 .22 .29 .26 .30 .28 .26 .32 .25 .23 .25 .29 .29 .28 .30 .30 .33 .30 .30 .26
[1] 4q1d.b .12 .10 .17 .15 .25 .23 .12 .13 .16 .15 .15 .13 .08 .11 .05 .06 .15 .08 .09 .11 .10
0
.15 .07 .29 .29 .24 .29 .28 .30 .32 .27 .32 .27 .26 .26 .30 .30 .30 .33 .34 .33 .33 .32 .30
[1] 4q1e.a .18 .18 .21 .16 .23 .28 .14 .20 .15 .03 .04 .08 .12 .22 .18 .18 .05 .21 .20 .14 .22 .15
0
.15 .42 .42 .37 .42 .41 .43 .46 .41 .46 .42 .40 .39 .42 .42 .43 .47 .46 .47 .47 .45 .44
[1] 4q1f.a .10 .12 .13 .13 .19 .20 .10 .12 .12 .15 .16 .12 .08 .12 .08 .08 .15 .10 .08 .10 .09 .07 .15
0
.28 .27 .23 .29 .27 .30 .32 .27 .31 .26 .25 .25 .29 .29 .28 .32 .32 .32 .33 .30 .30
[2] 1p5z.b .30 .30 .25 .33 .32 .30 .33 .23 .33 .42 .41 .36 .31 .26 .27 .27 .39 .23 .25 .34 .25 .29 .42 .28
0
.10 .07 .10 .10 .12 .06 .13 .10 .06 .09 .12 .13 .12 .09 .10 .13 .15 .11 .08 .06
[2] 1p60.b .31 .29 .25 .32 .29 .32 .32 .25 .33 .42 .41 .38 .31 .29 .28 .28 .40 .27 .29 .33 .28 .29 .42 .27 .10
0
.10 .07 .09 .04 .10 .08 .07 .09 .11 .10 .10 .09 .06 .12 .12 .12 .09 .07 .08
[2] 1p62.b .27 .25 .20 .29 .30 .30 .28 .20 .29 .38 .36 .32 .26 .23 .22 .23 .35 .20 .23 .29 .22 .24 .37 .23 .07 .10
0
.11 .09 .13 .12 .09 .13 .08 .06 .12 .12 .12 .10 .13 .14 .17 .13 .09 .10
[2] 2a2z.b .32 .30 .25 .31 .30 .31 .32 .26 .33 .42 .40 .40 .31 .31 .28 .29 .41 .28 .31 .33 .29 .29 .42 .29 .10 .07 .11
0
.10 .07 .11 .11 .10 .09 .11 .10 .08 .08 .07 .12 .11 .11 .13 .09 .08
[2] 2a7q.a .29 .28 .23 .32 .29 .30 .32 .23 .33 .41 .40 .36 .31 .28 .26 .28 .38 .26 .27 .34 .26 .28 .41 .27 .10 .09 .09 .10
0
.11 .13 .12 .15 .10 .10 .14 .14 .14 .06 .11 .11 .12 .16 .09 .11
[2] 2no0.b .34 .31 .27 .34 .31 .32 .34 .27 .35 .43 .43 .41 .33 .31 .28 .29 .43 .28 .31 .35 .30 .30 .43 .30 .12 .04 .13 .07 .11
0
.10 .08 .07 .12 .12 .10 .10 .09 .08 .14 .15 .12 .10 .07 .09
[2] 2no1.a .33 .33 .30 .37 .33 .30 .37 .25 .38 .46 .45 .40 .36 .29 .30 .32 .43 .27 .29 .37 .28 .32 .46 .32 .06 .10 .12 .11 .13 .10
0
.13 .08 .08 .11 .13 .12 .11 .10 .10 .13 .14 .10 .10 .03
[2] 2no6.b .30 .30 .25 .34 .33 .32 .32 .24 .33 .41 .40 .37 .32 .28 .26 .27 .39 .25 .27 .34 .26 .27 .41 .27 .13 .08 .09 .11 .12 .08 .13
0
.09 .08 .06 .15 .13 .13 .10 .16 .16 .18 .11 .10 .11
[2] 2no7.b .36 .33 .30 .37 .35 .32 .36 .30 .37 .46 .45 .43 .35 .33 .30 .30 .45 .29 .30 .38 .32 .32 .46 .31 .10 .07 .13 .10 .15 .07 .08 .09
0
.10 .12 .13 .10 .10 .09 .12 .16 .13 .08 .08 .08
[2] 2no9.a .29 .28 .25 .34 .31 .30 .33 .22 .34 .41 .41 .36 .31 .26 .26 .27 .39 .23 .25 .33 .25 .27 .42 .26 .06 .09 .08 .09 .10 .12 .08 .08 .10
0
.03 .13 .12 .12 .09 .10 .10 .14 .11 .10 .06
[2] 2noa.a .28 .27 .24 .32 .32 .31 .31 .21 .32 .40 .39 .35 .30 .25 .25 .26 .38 .22 .25 .32 .23 .26 .40 .25 .09 .11 .06 .11 .10 .12 .11 .06 .12 .03
0
.13 .12 .11 .11 .13 .12 .17 .12 .11 .09
[2] 2qrn.b .30 .27 .22 .31 .27 .29 .29 .23 .29 .39 .38 .36 .28 .27 .25 .25 .38 .24 .26 .30 .25 .26 .39 .25 .12 .10 .12 .10 .14 .10 .13 .15 .13 .13 .13
0
.07 .07 .12 .13 .16 .13 .13 .12 .12
[2] 2qro.a .33 .30 .26 .34 .30 .33 .33 .27 .33 .43 .41 .39 .32 .31 .29 .29 .42 .28 .31 .33 .29 .30 .42 .29 .13 .10 .12 .08 .14 .10 .12 .13 .10 .12 .12 .07
0
.01 .11 .14 .15 .13 .14 .12 .11
[2] 2qro.c .33 .30 .25 .33 .30 .33 .33 .27 .33 .43 .41 .39 .31 .31 .29 .28 .41 .28 .30 .33 .29 .30 .42 .29 .12 .09 .12 .08 .14 .09 .11 .13 .10 .12 .11 .07 .01
0
.11 .14 .15 .13 .13 .11 .10
[2] 2zi3.b .31 .30 .24 .34 .31 .33 .34 .25 .34 .42 .42 .38 .32 .30 .28 .30 .39 .27 .28 .35 .28 .30 .43 .28 .09 .06 .10 .07 .06 .08 .10 .10 .09 .09 .11 .12 .11 .11
0
.09 .10 .10 .11 .07 .07
[2] 2zi4.a .34 .32 .28 .38 .34 .34 .38 .29 .38 .46 .46 .41 .36 .32 .31 .32 .43 .28 .30 .37 .30 .33 .47 .32 .10 .12 .13 .12 .11 .14 .10 .16 .12 .10 .13 .13 .14 .14 .09
0
.11 .09 .12 .10 .08
[2] 2zi7.b .31 .32 .28 .36 .34 .38 .37 .25 .37 .45 .45 .40 .36 .32 .32 .34 .43 .29 .32 .38 .30 .34 .46 .32 .13 .12 .14 .11 .11 .15 .13 .16 .16 .10 .12 .16 .15 .15 .10 .11
0
.15 .15 .14 .11
[2] 2zia.a .37 .32 .28 .37 .32 .36 .38 .31 .38 .46 .46 .43 .36 .35 .31 .33 .45 .32 .34 .38 .33 .33 .47 .32 .15 .12 .17 .11 .12 .12 .14 .18 .13 .14 .17 .13 .13 .13 .10 .09 .15
0
.16 .13 .12
[2] 3hp1.a .35 .35 .30 .37 .34 .34 .35 .27 .37 .47 .47 .42 .37 .30 .31 .33 .45 .28 .32 .39 .30 .33 .47 .33 .11 .09 .13 .13 .16 .10 .10 .11 .08 .11 .12 .13 .14 .13 .11 .12 .15 .16
0
.09 .08
[2] 3ipx.a .35 .33 .28 .36 .33 .32 .37 .28 .37 .45 .45 .41 .35 .32 .30 .30 .43 .28 .30 .37 .30 .32 .45 .30 .08 .07 .09 .09 .09 .07 .10 .10 .08 .10 .11 .12 .12 .11 .07 .10 .14 .13 .09
0
.09
[2] 3kfx.a .31 .31 .27 .35 .31 .31 .34 .23 .35 .43 .43 .38 .33 .27 .28 .29 .41 .24 .27 .36 .26 .30 .44 .30 .06 .08 .10 .08 .11 .09 .03 .11 .08 .06 .09 .12 .11 .10 .07 .08 .11 .12 .08 .09
0
[Pocket clash dissimilarity matrix]

Site backbone RMSD (median 2.0 Å)

Pockets (x) vs pockets (y) colored by RMSD of site residue backbone atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
2zi5.b
2zi5.d
2zi6.a
3ipy.a
3mjr.a
3mjr.d
3qej.a
3qen.b
3qeo.b
4jlj.a
4jlk.a
4jlm.a
4jlm.b
4jln.a
4kcg.b
4l5b.b
4q18.b
4q19.b
4q1a.b
4q1b.a
4q1c.b
4q1d.b
4q1e.a
4q1f.a
1p5z.b
1p60.b
1p62.b
2a2z.b
2a7q.a
2no0.b
2no1.a
2no6.b
2no7.b
2no9.a
2noa.a
2qrn.b
2qro.a
2qro.c
2zi3.b
2zi4.a
2zi7.b
2zia.a
3hp1.a
3ipx.a
3kfx.a
[1] 2zi5.b
0
0.5 0.5 1.2 1.5 1.8 0.8 0.5 0.8 0.9 0.8 1.0 0.6 0.5 0.6 0.5 0.8 0.6 0.6 0.7 0.5 0.7 1.0 0.7 2.1 2.1 2.1 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.0 2.1 2.2 2.2 2.1 2.1 2.1 2.2 2.1 2.0 2.1
[1] 2zi5.d 0.5
0
0.5 1.2 1.4 1.8 0.9 0.4 0.7 0.9 0.8 1.1 0.6 0.4 0.6 0.5 0.7 0.5 0.4 0.7 0.4 0.7 0.9 0.6 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.4 1.6 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.4 1.6
[1] 2zi6.a 0.5 0.5
0
1.3 1.3 1.7 0.9 0.4 0.7 1.0 0.9 1.2 0.7 0.5 0.5 0.4 0.8 0.5 0.5 0.7 0.4 0.8 1.1 0.6 1.3 1.4 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.4 1.3 1.4
[1] 3ipy.a 1.2 1.2 1.3
0
1.9 1.9 1.0 1.4 1.3 1.2 1.0 1.0 1.1 1.3 1.3 1.3 1.1 1.2 1.2 1.4 1.3 1.3 1.3 1.4 2.7 2.6 2.7 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.6 2.7 2.7 2.7 2.6 2.7 2.5 2.7 2.6 2.6 2.7
[1] 3mjr.a 1.5 1.4 1.3 1.9
0
1.3 1.5 1.4 1.4 1.6 1.6 1.8 1.5 1.6 1.4 1.5 1.6 1.6 1.6 1.5 1.5 1.7 1.7 1.3 2.2 2.3 2.3 2.3 2.2 2.3 2.3 2.3 2.3 2.3 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.2 2.2 2.3
[1] 3mjr.d 1.8 1.8 1.7 1.9 1.3
0
1.6 1.8 1.7 1.6 1.8 1.8 1.8 1.9 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.9 1.8 1.7 2.0 2.0 1.9 1.9 2.0 2.0 2.1 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 2.1 2.0 1.9 2.0
[1] 3qej.a 0.8 0.9 0.9 1.0 1.5 1.6
0
0.8 0.6 0.6 0.7 0.7 0.7 0.9 1.0 0.9 0.8 1.0 1.0 1.0 0.9 0.8 0.9 1.0 2.2 2.1 2.2 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.1 2.3 2.2 2.1 2.2
[1] 3qen.b 0.5 0.4 0.4 1.4 1.4 1.8 0.8
0
0.6 0.9 0.9 1.1 0.7 0.5 0.6 0.4 0.8 0.7 0.7 0.6 0.5 0.6 1.0 0.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.0 1.9 1.8 2.0 2.0 2.0 1.9 1.9 1.9 2.1 1.9 1.9 1.9
[1] 3qeo.b 0.8 0.7 0.7 1.3 1.4 1.7 0.6 0.6
0
0.8 0.9 1.1 0.8 0.9 0.8 0.8 0.9 0.9 1.0 0.8 0.8 0.7 1.1 0.9 2.0 1.9 2.0 2.0 1.9 2.0 2.0 1.9 2.0 2.0 1.9 2.0 2.0 2.0 2.0 2.0 1.9 2.1 2.0 1.9 2.0
[1] 4jlj.a 0.9 0.9 1.0 1.2 1.6 1.6 0.6 0.9 0.8
0
0.5 0.6 0.6 0.9 1.0 1.0 0.6 1.0 1.0 1.0 0.9 0.8 0.5 1.0 2.3 2.3 2.2 2.3 2.2 2.3 2.3 2.3 2.4 2.3 2.2 2.4 2.4 2.4 2.3 2.4 2.2 2.4 2.3 2.2 2.3
[1] 4jlk.a 0.8 0.8 0.9 1.0 1.6 1.8 0.7 0.9 0.9 0.5
0
0.5 0.6 0.8 0.9 0.9 0.5 0.9 0.9 1.0 0.8 0.8 0.5 0.9 2.4 2.4 2.4 2.4 2.3 2.4 2.4 2.4 2.5 2.4 2.3 2.5 2.5 2.5 2.4 2.5 2.3 2.5 2.4 2.3 2.4
[1] 4jlm.a 1.0 1.1 1.2 1.0 1.8 1.8 0.7 1.1 1.1 0.6 0.5
0
0.8 1.1 1.2 1.1 0.7 1.1 1.1 1.1 1.1 0.9 0.6 1.1 2.5 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.4 2.6 2.5 2.4 2.5
[1] 4jlm.b 0.6 0.6 0.7 1.1 1.5 1.8 0.7 0.7 0.8 0.6 0.6 0.8
0
0.7 0.7 0.7 0.6 0.7 0.8 0.8 0.7 0.7 0.7 0.8 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.2 2.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.2 2.4 2.2 2.2 2.3
[1] 4jln.a 0.5 0.4 0.5 1.3 1.6 1.9 0.9 0.5 0.9 0.9 0.8 1.1 0.7
0
0.5 0.3 0.7 0.5 0.4 0.7 0.2 0.8 1.0 0.6 2.1 2.1 2.1 2.2 2.1 2.1 2.1 2.1 2.2 2.1 2.0 2.2 2.2 2.2 2.2 2.2 2.1 2.3 2.1 2.1 2.2
[1] 4kcg.b 0.6 0.6 0.5 1.3 1.4 1.8 1.0 0.6 0.8 1.0 0.9 1.2 0.7 0.5
0
0.5 0.9 0.6 0.5 0.8 0.5 0.9 1.1 0.7 1.7 1.7 1.7 1.7 1.6 1.7 1.7 1.6 1.8 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.6 1.7
[1] 4l5b.b 0.5 0.5 0.4 1.3 1.5 1.9 0.9 0.4 0.8 1.0 0.9 1.1 0.7 0.3 0.5
0
0.8 0.4 0.3 0.7 0.3 0.7 1.1 0.6 1.6 1.7 1.7 1.7 1.6 1.7 1.7 1.6 1.7 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.6 1.7
[1] 4q18.b 0.8 0.7 0.8 1.1 1.6 1.8 0.8 0.8 0.9 0.6 0.5 0.7 0.6 0.7 0.9 0.8
0
0.8 0.8 0.8 0.8 0.8 0.6 0.8 2.1 2.1 2.1 2.0 2.0 2.1 2.1 2.0 2.2 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.0 2.1
[1] 4q19.b 0.6 0.5 0.5 1.2 1.6 1.8 1.0 0.7 0.9 1.0 0.9 1.1 0.7 0.5 0.6 0.4 0.8
0
0.5 0.7 0.4 0.8 1.1 0.7 2.1 2.1 2.2 2.2 2.1 2.1 2.1 2.1 2.2 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.1 2.3 2.1 2.1 2.2
[1] 4q1a.b 0.6 0.4 0.5 1.2 1.6 1.8 1.0 0.7 1.0 1.0 0.9 1.1 0.8 0.4 0.5 0.3 0.8 0.5
0
0.7 0.3 0.9 1.1 0.7 2.2 2.2 2.2 2.3 2.2 2.2 2.2 2.2 2.3 2.2 2.1 2.3 2.3 2.3 2.2 2.2 2.2 2.4 2.2 2.2 2.2
[1] 4q1b.a 0.7 0.7 0.7 1.4 1.5 1.8 1.0 0.6 0.8 1.0 1.0 1.1 0.8 0.7 0.8 0.7 0.8 0.7 0.7
0
0.7 0.7 1.1 0.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.9 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 2.0 1.8 1.8 1.8
[1] 4q1c.b 0.5 0.4 0.4 1.3 1.5 1.8 0.9 0.5 0.8 0.9 0.8 1.1 0.7 0.2 0.5 0.3 0.8 0.4 0.3 0.7
0
0.7 1.0 0.5 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.8 1.7 1.6 1.8 1.8 1.8 1.7 1.7 1.7 1.9 1.7 1.7 1.8
[1] 4q1d.b 0.7 0.7 0.8 1.3 1.7 1.9 0.8 0.6 0.7 0.8 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.8 0.9 0.7 0.7
0
1.0 0.8 2.1 2.0 2.1 2.1 2.0 2.1 2.1 2.0 2.1 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.0 2.2 2.1 2.0 2.1
[1] 4q1e.a 1.0 0.9 1.1 1.3 1.7 1.8 0.9 1.0 1.1 0.5 0.5 0.6 0.7 1.0 1.1 1.1 0.6 1.1 1.1 1.1 1.0 1.0
0
1.1 2.5 2.5 2.5 2.5 2.4 2.5 2.6 2.5 2.6 2.5 2.5 2.6 2.6 2.6 2.5 2.6 2.4 2.7 2.6 2.5 2.6
[1] 4q1f.a 0.7 0.6 0.6 1.4 1.3 1.7 1.0 0.7 0.9 1.0 0.9 1.1 0.8 0.6 0.7 0.6 0.8 0.7 0.7 0.6 0.5 0.8 1.1
0
2.2 2.2 2.2 2.2 2.1 2.2 2.2 2.1 2.2 2.2 2.1 2.2 2.2 2.3 2.2 2.2 2.2 2.4 2.2 2.1 2.2
[2] 1p5z.b 2.1 1.5 1.3 2.7 2.2 2.0 2.2 1.9 2.0 2.3 2.4 2.5 2.2 2.1 1.7 1.6 2.1 2.1 2.2 1.8 1.7 2.1 2.5 2.2
0
0.4 0.4 0.6 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.3 0.6 0.6 0.3 0.3 0.4
[2] 1p60.b 2.1 1.5 1.4 2.6 2.3 2.0 2.1 1.9 1.9 2.3 2.4 2.4 2.2 2.1 1.7 1.7 2.1 2.1 2.2 1.8 1.7 2.0 2.5 2.2 0.4
0
0.4 0.4 0.4 0.2 0.3 0.4 0.3 0.4 0.5 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.5 0.4 0.2
[2] 1p62.b 2.1 1.5 1.4 2.7 2.3 1.9 2.2 1.9 2.0 2.2 2.4 2.4 2.2 2.1 1.7 1.7 2.1 2.2 2.2 1.8 1.7 2.1 2.5 2.2 0.4 0.4
0
0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.6 0.4 0.4
[2] 2a2z.b 2.1 1.5 1.4 2.6 2.3 1.9 2.1 1.9 2.0 2.3 2.4 2.4 2.2 2.2 1.7 1.7 2.0 2.2 2.3 1.8 1.7 2.1 2.5 2.2 0.6 0.4 0.5
0
0.5 0.3 0.4 0.6 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.4
[2] 2a7q.a 2.0 1.4 1.3 2.6 2.2 2.0 2.1 1.9 1.9 2.2 2.3 2.4 2.2 2.1 1.6 1.6 2.0 2.1 2.2 1.8 1.7 2.0 2.4 2.1 0.4 0.4 0.5 0.5
0
0.4 0.5 0.5 0.5 0.4 0.5 0.6 0.6 0.6 0.4 0.4 0.6 0.6 0.5 0.3 0.4
[2] 2no0.b 2.1 1.5 1.4 2.6 2.3 2.0 2.1 1.9 2.0 2.3 2.4 2.5 2.2 2.1 1.7 1.7 2.1 2.1 2.2 1.8 1.7 2.1 2.5 2.2 0.5 0.2 0.4 0.3 0.4
0
0.3 0.4 0.3 0.5 0.5 0.4 0.4 0.4 0.3 0.5 0.4 0.4 0.5 0.4 0.2
[2] 2no1.a 2.1 1.5 1.4 2.6 2.3 2.1 2.2 1.9 2.0 2.3 2.4 2.5 2.3 2.1 1.7 1.7 2.1 2.1 2.2 1.8 1.8 2.1 2.6 2.2 0.4 0.3 0.5 0.4 0.5 0.3
0
0.4 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.6 0.4 0.5 0.4 0.2
[2] 2no6.b 2.1 1.4 1.3 2.7 2.3 1.9 2.2 1.9 1.9 2.3 2.4 2.5 2.2 2.1 1.6 1.6 2.0 2.1 2.2 1.7 1.7 2.0 2.5 2.1 0.4 0.4 0.4 0.6 0.5 0.4 0.4
0
0.3 0.2 0.2 0.5 0.5 0.5 0.5 0.4 0.7 0.7 0.5 0.4 0.3
[2] 2no7.b 2.1 1.6 1.4 2.7 2.3 2.0 2.2 2.0 2.0 2.4 2.5 2.5 2.3 2.2 1.8 1.7 2.2 2.2 2.3 1.9 1.8 2.1 2.6 2.2 0.4 0.3 0.5 0.5 0.5 0.3 0.2 0.3
0
0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.6 0.5 0.5 0.4 0.2
[2] 2no9.a 2.1 1.5 1.4 2.7 2.3 2.0 2.2 1.9 2.0 2.3 2.4 2.5 2.2 2.1 1.7 1.6 2.1 2.1 2.2 1.8 1.7 2.1 2.5 2.2 0.4 0.4 0.4 0.6 0.4 0.5 0.3 0.2 0.3
0
0.2 0.5 0.5 0.5 0.5 0.4 0.7 0.7 0.5 0.4 0.3
[2] 2noa.a 2.0 1.4 1.3 2.6 2.2 2.0 2.1 1.8 1.9 2.2 2.3 2.4 2.2 2.0 1.6 1.6 2.0 2.1 2.1 1.7 1.6 2.0 2.5 2.1 0.4 0.5 0.4 0.6 0.5 0.5 0.4 0.2 0.4 0.2
0
0.5 0.5 0.5 0.5 0.5 0.7 0.7 0.5 0.4 0.4
[2] 2qrn.b 2.1 1.5 1.4 2.7 2.3 2.0 2.2 2.0 2.0 2.4 2.5 2.5 2.3 2.2 1.7 1.7 2.1 2.2 2.3 1.8 1.8 2.1 2.6 2.2 0.5 0.4 0.5 0.5 0.6 0.4 0.4 0.5 0.4 0.5 0.5
0
0.3 0.3 0.5 0.5 0.7 0.6 0.6 0.5 0.4
[2] 2qro.a 2.2 1.5 1.4 2.7 2.3 2.0 2.2 2.0 2.0 2.4 2.5 2.5 2.3 2.2 1.7 1.7 2.1 2.2 2.3 1.8 1.8 2.1 2.6 2.2 0.5 0.4 0.5 0.5 0.6 0.4 0.4 0.5 0.4 0.5 0.5 0.3
0
0 0.5 0.5 0.6 0.5 0.5 0.5 0.4
[2] 2qro.c 2.2 1.5 1.4 2.7 2.3 2.0 2.2 2.0 2.0 2.4 2.5 2.5 2.3 2.2 1.7 1.7 2.1 2.2 2.3 1.8 1.8 2.1 2.6 2.3 0.5 0.4 0.5 0.5 0.6 0.4 0.4 0.5 0.4 0.5 0.5 0.3 0
0
0.5 0.5 0.6 0.5 0.5 0.5 0.4
[2] 2zi3.b 2.1 1.5 1.4 2.6 2.3 2.0 2.2 1.9 2.0 2.3 2.4 2.5 2.3 2.2 1.7 1.7 2.1 2.2 2.2 1.8 1.7 2.1 2.5 2.2 0.4 0.3 0.5 0.5 0.4 0.3 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5
0
0.5 0.5 0.5 0.5 0.4 0.3
[2] 2zi4.a 2.1 1.5 1.4 2.7 2.3 2.1 2.2 1.9 2.0 2.4 2.5 2.5 2.3 2.2 1.7 1.7 2.1 2.2 2.2 1.8 1.7 2.1 2.6 2.2 0.3 0.4 0.6 0.6 0.4 0.5 0.3 0.4 0.3 0.4 0.5 0.5 0.5 0.5 0.5
0
0.6 0.5 0.4 0.3 0.4
[2] 2zi7.b 2.1 1.5 1.4 2.5 2.3 1.9 2.1 1.9 1.9 2.2 2.3 2.4 2.2 2.1 1.7 1.7 2.1 2.1 2.2 1.8 1.7 2.0 2.4 2.2 0.6 0.4 0.6 0.5 0.6 0.4 0.6 0.7 0.6 0.7 0.7 0.7 0.6 0.6 0.5 0.6
0
0.5 0.6 0.5 0.5
[2] 2zia.a 2.2 1.6 1.5 2.7 2.4 2.1 2.3 2.1 2.1 2.4 2.5 2.6 2.4 2.3 1.8 1.8 2.2 2.3 2.4 2.0 1.9 2.2 2.7 2.4 0.6 0.4 0.7 0.5 0.6 0.4 0.4 0.7 0.5 0.7 0.7 0.6 0.5 0.5 0.5 0.5 0.5
0
0.6 0.6 0.4
[2] 3hp1.a 2.1 1.5 1.4 2.6 2.2 2.0 2.2 1.9 2.0 2.3 2.4 2.5 2.2 2.1 1.7 1.7 2.1 2.1 2.2 1.8 1.7 2.1 2.6 2.2 0.3 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.4 0.6 0.6
0
0.4 0.5
[2] 3ipx.a 2.0 1.4 1.3 2.6 2.2 1.9 2.1 1.9 1.9 2.2 2.3 2.4 2.2 2.1 1.6 1.6 2.0 2.1 2.2 1.8 1.7 2.0 2.5 2.1 0.3 0.4 0.4 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.3 0.5 0.6 0.4
0
0.3
[2] 3kfx.a 2.1 1.6 1.4 2.7 2.3 2.0 2.2 1.9 2.0 2.3 2.4 2.5 2.3 2.2 1.7 1.7 2.1 2.2 2.2 1.8 1.8 2.1 2.6 2.2 0.4 0.2 0.4 0.4 0.4 0.2 0.2 0.3 0.2 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.5 0.4 0.5 0.3
0
[Binding site backbone RMSD matrix]

Site full-atom RMSD (median 1.5 Å)

Pockets (x) vs pockets (y) colored by RMSD of all site residue atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
2zi5.b
2zi5.d
2zi6.a
3ipy.a
3mjr.a
3mjr.d
3qej.a
3qen.b
3qeo.b
4jlj.a
4jlk.a
4jlm.a
4jlm.b
4jln.a
4kcg.b
4l5b.b
4q18.b
4q19.b
4q1a.b
4q1b.a
4q1c.b
4q1d.b
4q1e.a
4q1f.a
1p5z.b
1p60.b
1p62.b
2a2z.b
2a7q.a
2no0.b
2no1.a
2no6.b
2no7.b
2no9.a
2noa.a
2qrn.b
2qro.a
2qro.c
2zi3.b
2zi4.a
2zi7.b
2zia.a
3hp1.a
3ipx.a
3kfx.a
[1] 2zi5.b
0
0.8 0.8 1.6 2.0 2.5 1.1 1.0 1.2 1.3 1.4 1.4 1.0 1.0 0.9 0.9 1.2 1.1 1.1 0.9 0.9 1.0 1.3 1.2 2.5 2.4 2.5 2.2 2.5 2.4 2.4 2.4 2.5 2.4 2.3 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.6 2.5 2.4
[1] 2zi5.d 0.8
0
0.9 1.7 2.1 2.5 1.1 0.9 1.0 1.3 1.2 1.3 1.0 1.0 1.1 1.1 1.2 1.1 1.1 1.0 1.1 1.0 1.3 1.0 2.0 1.9 2.0 1.9 2.0 2.0 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9 1.9 2.0 2.1 2.0 2.1 2.0 2.0
[1] 2zi6.a 0.8 0.9
0
1.7 2.0 2.5 1.1 0.9 1.1 1.4 1.4 1.5 1.1 1.1 1.0 1.0 1.3 1.1 1.1 1.1 1.0 1.1 1.4 1.1 1.8 1.8 1.9 1.7 1.9 1.8 1.7 1.7 1.8 1.7 1.6 1.7 1.7 1.7 1.7 1.8 1.9 1.8 1.9 1.9 1.8
[1] 3ipy.a 1.6 1.7 1.7
0
2.3 2.5 1.4 1.7 1.6 1.7 1.6 1.3 1.5 1.7 1.5 1.5 1.7 1.4 1.5 1.6 1.5 1.5 1.8 1.6 2.8 2.7 2.8 2.6 2.8 2.7 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.7 2.8 2.7 2.7 2.9 2.8 2.8
[1] 3mjr.a 2.0 2.1 2.0 2.3
0
1.5 2.0 2.1 2.0 2.2 2.2 2.2 2.1 2.1 2.1 2.1 2.2 2.1 2.1 1.9 2.1 2.2 2.2 2.0 2.9 2.8 2.9 2.8 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.9 2.8 2.8 2.9 2.9 2.8
[1] 3mjr.d 2.5 2.5 2.5 2.5 1.5
0
2.3 2.5 2.4 2.4 2.4 2.4 2.4 2.5 2.6 2.6 2.5 2.6 2.6 2.4 2.6 2.5 2.5 2.4 2.9 2.8 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.8 2.8 2.9 2.8 2.9 3.0 2.9 2.9
[1] 3qej.a 1.1 1.1 1.1 1.4 2.0 2.3
0
0.9 0.7 1.1 1.1 1.0 0.9 1.1 1.1 1.1 1.2 1.1 1.2 1.3 1.1 1.0 1.2 1.1 2.5 2.4 2.5 2.2 2.4 2.4 2.4 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.4 2.5 2.6 2.5 2.5
[1] 3qen.b 1.0 0.9 0.9 1.7 2.1 2.5 0.9
0
0.7 1.3 1.3 1.3 1.0 0.9 0.9 0.9 1.2 1.0 1.0 1.1 0.9 0.9 1.4 1.0 2.2 2.2 2.2 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.2 2.2
[1] 3qeo.b 1.2 1.0 1.1 1.6 2.0 2.4 0.7 0.7
0
1.2 1.3 1.2 1.0 1.1 1.1 1.1 1.2 1.1 1.2 1.1 1.1 1.0 1.4 1.1 2.3 2.3 2.3 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.3 2.3 2.3 2.3 2.4 2.3 2.4 2.4 2.3 2.3
[1] 4jlj.a 1.3 1.3 1.4 1.7 2.2 2.4 1.1 1.3 1.2
0
0.8 1.0 1.0 1.1 1.4 1.4 0.9 1.4 1.5 1.3 1.4 1.2 0.7 1.2 2.7 2.6 2.6 2.5 2.7 2.7 2.7 2.6 2.7 2.6 2.6 2.6 2.7 2.7 2.6 2.8 2.7 2.8 2.8 2.7 2.7
[1] 4jlk.a 1.4 1.2 1.4 1.6 2.2 2.4 1.1 1.3 1.3 0.8
0
0.9 1.0 1.2 1.3 1.3 0.8 1.3 1.4 1.3 1.3 1.1 0.8 1.2 2.7 2.6 2.6 2.5 2.7 2.6 2.6 2.6 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.8 2.7 2.7 2.8 2.7 2.7
[1] 4jlm.a 1.4 1.3 1.5 1.3 2.2 2.4 1.0 1.3 1.2 1.0 0.9
0
1.0 1.2 1.4 1.4 1.1 1.2 1.4 1.3 1.3 1.1 1.1 1.3 2.7 2.6 2.6 2.5 2.6 2.6 2.6 2.6 2.7 2.6 2.6 2.6 2.7 2.7 2.6 2.7 2.7 2.7 2.8 2.6 2.7
[1] 4jlm.b 1.0 1.0 1.1 1.5 2.1 2.4 0.9 1.0 1.0 1.0 1.0 1.0
0
0.9 1.0 1.1 1.0 1.1 1.1 1.1 1.0 0.9 1.0 1.0 2.5 2.5 2.5 2.3 2.5 2.5 2.5 2.5 2.6 2.5 2.4 2.5 2.5 2.5 2.5 2.6 2.5 2.6 2.6 2.5 2.5
[1] 4jln.a 1.0 1.0 1.1 1.7 2.1 2.5 1.1 0.9 1.1 1.1 1.2 1.2 0.9
0
1.0 0.9 1.1 0.9 1.0 1.0 0.9 0.9 1.2 0.9 2.5 2.4 2.5 2.3 2.5 2.5 2.4 2.4 2.5 2.4 2.4 2.4 2.5 2.5 2.4 2.5 2.5 2.6 2.6 2.5 2.5
[1] 4kcg.b 0.9 1.1 1.0 1.5 2.1 2.6 1.1 0.9 1.1 1.4 1.3 1.4 1.0 1.0
0
0.7 1.4 0.8 0.7 1.1 0.8 1.0 1.4 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 2.0 2.0 2.0 2.0 2.1 2.0 2.1 2.0 2.0
[1] 4l5b.b 0.9 1.1 1.0 1.5 2.1 2.6 1.1 0.9 1.1 1.4 1.3 1.4 1.1 0.9 0.7
0
1.4 0.7 0.7 1.0 0.7 0.9 1.5 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.9 1.9 2.0 2.0 2.1 2.0 2.1 2.0 2.0
[1] 4q18.b 1.2 1.2 1.3 1.7 2.2 2.5 1.2 1.2 1.2 0.9 0.8 1.1 1.0 1.1 1.4 1.4
0
1.3 1.3 1.3 1.3 1.1 0.7 1.1 2.5 2.4 2.5 2.4 2.5 2.5 2.5 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.6 2.5 2.5
[1] 4q19.b 1.1 1.1 1.1 1.4 2.1 2.6 1.1 1.0 1.1 1.4 1.3 1.2 1.1 0.9 0.8 0.7 1.3
0
0.6 1.1 0.6 0.9 1.4 0.9 2.4 2.4 2.4 2.2 2.4 2.4 2.3 2.4 2.4 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
[1] 4q1a.b 1.1 1.1 1.1 1.5 2.1 2.6 1.2 1.0 1.2 1.5 1.4 1.4 1.1 1.0 0.7 0.7 1.3 0.6
0
1.1 0.5 1.0 1.4 0.9 2.4 2.4 2.4 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.3 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.4 2.4
[1] 4q1b.a 0.9 1.0 1.1 1.6 1.9 2.4 1.3 1.1 1.1 1.3 1.3 1.3 1.1 1.0 1.1 1.0 1.3 1.1 1.1
0
1.1 0.9 1.4 1.0 2.2 2.1 2.2 2.1 2.2 2.1 2.1 2.1 2.1 2.0 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.2 2.3 2.2 2.1
[1] 4q1c.b 0.9 1.1 1.0 1.5 2.1 2.6 1.1 0.9 1.1 1.4 1.3 1.3 1.0 0.9 0.8 0.7 1.3 0.6 0.5 1.1
0
0.9 1.4 0.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.0 2.0
[1] 4q1d.b 1.0 1.0 1.1 1.5 2.2 2.5 1.0 0.9 1.0 1.2 1.1 1.1 0.9 0.9 1.0 0.9 1.1 0.9 1.0 0.9 0.9
0
1.2 0.9 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.1 2.2 2.2 2.2 2.2 2.3 2.2 2.3 2.2 2.2
[1] 4q1e.a 1.3 1.3 1.4 1.8 2.2 2.5 1.2 1.4 1.4 0.7 0.8 1.1 1.0 1.2 1.4 1.5 0.7 1.4 1.4 1.4 1.4 1.2
0
1.2 2.9 2.8 2.8 2.6 2.9 2.9 2.9 2.8 2.9 2.8 2.8 2.9 2.9 2.9 2.9 3.0 2.9 3.0 3.0 2.9 2.9
[1] 4q1f.a 1.2 1.0 1.1 1.6 2.0 2.4 1.1 1.0 1.1 1.2 1.2 1.3 1.0 0.9 1.0 1.0 1.1 0.9 0.9 1.0 0.8 0.9 1.2
0
2.4 2.4 2.4 2.3 2.4 2.4 2.4 2.4 2.5 2.4 2.3 2.4 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.4 2.4
[2] 1p5z.b 2.5 2.0 1.8 2.8 2.9 2.9 2.5 2.2 2.3 2.7 2.7 2.7 2.5 2.5 2.0 2.0 2.5 2.4 2.4 2.2 2.0 2.2 2.9 2.4
0
1.0 0.4 1.0 0.6 1.1 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.2 1.1 0.8 0.5 1.0
[2] 1p60.b 2.4 1.9 1.8 2.7 2.8 2.8 2.4 2.2 2.3 2.6 2.6 2.6 2.5 2.4 2.0 2.0 2.4 2.4 2.4 2.1 2.0 2.2 2.8 2.4 1.0
0
1.0 0.8 1.0 0.4 0.7 0.5 0.4 0.7 0.7 0.8 0.8 0.8 0.4 1.0 1.0 0.7 1.1 1.0 0.6
[2] 1p62.b 2.5 2.0 1.9 2.8 2.9 2.8 2.5 2.2 2.3 2.6 2.6 2.6 2.5 2.5 2.0 2.0 2.5 2.4 2.4 2.2 2.0 2.2 2.8 2.4 0.4 1.0
0
1.0 0.7 1.1 1.0 1.1 1.1 1.0 1.0 1.0 1.1 1.1 1.1 0.8 1.3 1.1 0.9 0.6 1.0
[2] 2a2z.b 2.2 1.9 1.7 2.6 2.8 2.8 2.2 2.0 2.1 2.5 2.5 2.5 2.3 2.3 2.0 2.0 2.4 2.2 2.3 2.1 2.0 2.2 2.6 2.3 1.0 0.8 1.0
0
1.0 0.8 0.8 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.8 1.1 1.0 0.8 1.2 1.0 0.7
[2] 2a7q.a 2.5 2.0 1.9 2.8 2.9 2.9 2.4 2.2 2.3 2.7 2.7 2.6 2.5 2.5 2.0 2.0 2.5 2.4 2.4 2.2 2.0 2.2 2.9 2.4 0.6 1.0 0.7 1.0
0
1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.1 1.0 0.7 1.2 1.1 0.9 0.6 1.0
[2] 2no0.b 2.4 2.0 1.8 2.7 2.8 2.9 2.4 2.2 2.3 2.7 2.6 2.6 2.5 2.5 2.0 2.0 2.5 2.4 2.4 2.1 2.0 2.2 2.9 2.4 1.1 0.4 1.1 0.8 1.1
0
0.7 0.6 0.5 0.8 0.7 0.8 0.8 0.8 0.5 1.1 1.1 0.8 1.1 1.0 0.6
[2] 2no1.a 2.4 1.9 1.7 2.7 2.8 2.9 2.4 2.2 2.3 2.7 2.6 2.6 2.5 2.4 2.0 2.0 2.5 2.3 2.4 2.1 2.0 2.2 2.9 2.4 1.0 0.7 1.0 0.8 1.0 0.7
0
0.7 0.7 0.5 0.5 0.7 0.7 0.7 0.8 0.9 1.0 0.7 1.2 1.0 0.5
[2] 2no6.b 2.4 1.9 1.7 2.8 2.8 2.9 2.4 2.2 2.3 2.6 2.6 2.6 2.5 2.4 2.0 2.0 2.4 2.4 2.4 2.1 2.0 2.2 2.8 2.4 1.1 0.5 1.1 0.9 1.0 0.6 0.7
0
0.5 0.6 0.6 0.8 0.8 0.8 0.6 1.1 1.2 1.0 1.2 1.0 0.6
[2] 2no7.b 2.5 2.0 1.8 2.8 2.8 2.9 2.5 2.2 2.3 2.7 2.7 2.7 2.6 2.5 2.0 2.0 2.5 2.4 2.4 2.1 2.0 2.2 2.9 2.5 1.1 0.4 1.1 0.9 1.1 0.5 0.7 0.5
0
0.7 0.7 0.8 0.8 0.8 0.6 1.0 1.1 0.8 1.1 1.0 0.6
[2] 2no9.a 2.4 1.9 1.7 2.8 2.8 2.9 2.4 2.2 2.3 2.6 2.6 2.6 2.5 2.4 2.0 2.0 2.4 2.3 2.4 2.0 2.0 2.2 2.8 2.4 1.0 0.7 1.0 0.8 1.0 0.8 0.5 0.6 0.7
0
0.3 0.8 0.8 0.8 0.8 1.0 1.1 0.8 1.2 1.0 0.6
[2] 2noa.a 2.3 1.9 1.6 2.8 2.8 2.8 2.4 2.1 2.2 2.6 2.6 2.6 2.4 2.4 1.9 1.9 2.4 2.3 2.3 2.0 1.9 2.1 2.8 2.3 1.0 0.7 1.0 0.8 1.0 0.7 0.5 0.6 0.7 0.3
0
0.8 0.8 0.8 0.8 1.0 1.1 0.8 1.2 1.0 0.5
[2] 2qrn.b 2.4 1.9 1.7 2.8 2.8 2.8 2.4 2.2 2.3 2.6 2.6 2.6 2.5 2.4 1.9 1.9 2.4 2.4 2.4 2.0 1.9 2.1 2.9 2.4 1.0 0.8 1.0 0.7 1.0 0.8 0.7 0.8 0.8 0.8 0.8
0
0.4 0.4 0.8 1.0 1.0 0.8 1.2 1.0 0.7
[2] 2qro.a 2.4 1.9 1.7 2.8 2.8 2.8 2.4 2.2 2.3 2.7 2.6 2.7 2.5 2.5 2.0 1.9 2.4 2.4 2.4 2.1 2.0 2.2 2.9 2.4 1.0 0.8 1.1 0.7 1.1 0.8 0.7 0.8 0.8 0.8 0.8 0.4
0
0 0.8 1.1 1.0 0.8 1.2 1.1 0.7
[2] 2qro.c 2.4 1.9 1.7 2.8 2.8 2.8 2.4 2.2 2.3 2.7 2.6 2.7 2.5 2.5 2.0 1.9 2.4 2.4 2.4 2.1 2.0 2.2 2.9 2.4 1.0 0.8 1.1 0.7 1.1 0.8 0.7 0.8 0.8 0.8 0.8 0.4 0
0
0.8 1.1 1.0 0.8 1.2 1.1 0.7
[2] 2zi3.b 2.4 1.9 1.7 2.7 2.8 2.8 2.4 2.2 2.3 2.6 2.6 2.6 2.5 2.4 2.0 2.0 2.4 2.4 2.4 2.1 2.0 2.2 2.9 2.4 1.0 0.4 1.1 0.8 1.0 0.5 0.8 0.6 0.6 0.8 0.8 0.8 0.8 0.8
0
1.0 1.0 0.7 1.1 1.0 0.6
[2] 2zi4.a 2.5 2.0 1.8 2.8 2.9 2.9 2.5 2.3 2.4 2.8 2.8 2.7 2.6 2.5 2.0 2.0 2.5 2.4 2.5 2.2 2.0 2.2 3.0 2.5 0.6 1.0 0.8 1.1 0.7 1.1 0.9 1.1 1.0 1.0 1.0 1.0 1.1 1.1 1.0
0
1.2 0.9 0.8 0.7 1.0
[2] 2zi7.b 2.5 2.1 1.9 2.7 2.8 2.8 2.4 2.3 2.3 2.7 2.7 2.7 2.5 2.5 2.1 2.1 2.5 2.4 2.5 2.2 2.1 2.3 2.9 2.5 1.2 1.0 1.3 1.0 1.2 1.1 1.0 1.2 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.2
0
1.0 1.4 1.2 1.0
[2] 2zia.a 2.5 2.0 1.8 2.7 2.8 2.9 2.5 2.3 2.4 2.8 2.7 2.7 2.6 2.6 2.0 2.0 2.5 2.4 2.5 2.2 2.1 2.2 3.0 2.5 1.1 0.7 1.1 0.8 1.1 0.8 0.7 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.9 1.0
0
1.2 1.1 0.7
[2] 3hp1.a 2.6 2.1 1.9 2.9 2.9 3.0 2.6 2.3 2.4 2.8 2.8 2.8 2.6 2.6 2.1 2.1 2.6 2.4 2.5 2.3 2.1 2.3 3.0 2.5 0.8 1.1 0.9 1.2 0.9 1.1 1.2 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.1 0.8 1.4 1.2
0
0.7 1.1
[2] 3ipx.a 2.5 2.0 1.9 2.8 2.9 2.9 2.5 2.2 2.3 2.7 2.7 2.6 2.5 2.5 2.0 2.0 2.5 2.4 2.4 2.2 2.0 2.2 2.9 2.4 0.5 1.0 0.6 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 0.7 1.2 1.1 0.7
0
0.9
[2] 3kfx.a 2.4 2.0 1.8 2.8 2.8 2.9 2.5 2.2 2.3 2.7 2.7 2.7 2.5 2.5 2.0 2.0 2.5 2.4 2.4 2.1 2.0 2.2 2.9 2.4 1.0 0.6 1.0 0.7 1.0 0.6 0.5 0.6 0.6 0.6 0.5 0.7 0.7 0.7 0.6 1.0 1.0 0.7 1.1 0.9
0
[Binding site full-atom RMSD matrix]







[show 3D visualization]

[ENTRY 2D visualization]

L C X E | Background Color: | Anaglyph Stereo:

loading...