If you see this message after the page is completely loaded, then JavaScript is not supported or disabled in your browser. Please consider enabling JavaScript for this site.

AOFB_HUMAN_1_520

Amine oxidase [flavin-containing] B [Flavin monoamine oxidase family]

Composition of the binding site

Protein chains monomer
A1 (AOFB_HUMAN):10:15, 33:36, 40:43, 56:60, 84, 88, 101:104, 119, 164, 167, 168, 171, 172, 188, 195, 198:201, 206, 233:235, 263:265, 268, 271, 294, 296, 314, 316, 326:328, 343, 388, 393, 397, 398, 425, 426, 434:436, 43910:15, 33:36, 40:43, 56:60, 84, 88, 101:104, 119, 164, 167, 168, 171, 172, 188, 195, 198:201, 206, 233:235, 263:265, 268, 271, 294, 296, 314, 316, 326:328, 343, 388, 393, 397, 398, 425, 426, 434:436, 439

Full PDB list

1gos, 1oj9, 1oja, 1ojc, 1s2q, 1s2y, 1s3b, 1s3e, 2bk3, 2bk4, 2bk5, 2byb, 2c64, 2c65, 2c66, 2c67, 2c70, 2c72, 2c73, 2c75, 2c76, 2v5z, 2v60, 2v61, 2vrl, 2vrm, 2vz2, 2xcg, 2xfn, 2xfo, 2xfp, 2xfq, 2xfu, 3po7, 3zyx, 4a79, 4a7a, 4crt, 5mrl

Pocket contact map

[download in TSV format]
   
PDB.ch
   
ligand
A1
V
1
0
G
1
1
G
1
2
G
1
3
I
1
4
S
1
5
L
3
3
E
3
4
A
3
5
R
3
6
G
4
1
R
4
2
T
4
3
G
5
7
G
5
8
S
5
9
Y
6
0
L
8
8
G
1
0
1
P
1
0
2
F
1
0
3
P
1
0
4
W
1
1
9
L
1
6
4
L
1
6
7
F
1
6
8
L
1
7
1
C
1
7
2
Y
1
8
8
I
1
9
8
I
1
9
9
S
2
0
0
T
2
0
1
Q
2
0
6
R
2
3
3
P
2
3
4
V
2
3
5
A
2
6
3
I
2
6
4
P
2
6
5
L
2
6
8
K
2
7
1
V
2
9
4
K
2
9
6
T
3
1
4
I
3
1
6
Y
3
2
6
L
3
2
8
F
3
4
3
W
3
8
8
Y
3
9
3
C
3
9
7
Y
3
9
8
G
4
2
5
T
4
2
6
G
4
3
4
Y
4
3
5
M
4
3
6
A
4
3
9
[1]1gos.b fad.nyp65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1oj9.a 1pb,fad69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1oja.a fad,isn64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1ojc.a fad.laz66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1s2q.a fad.ras66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1s2y.a fad.rsa66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1s3b.b fad.rma67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]1s3e.a fad.rhp67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2bk3.a fad,foh69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2bk4.a fad.ras66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2bk5.a fad,isn64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2byb.a fad.dpk67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c64.a fad53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c64.b fad.ma068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c65.a fad.4cr74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c66.b fad.rm267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c67.a fad,rm164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c70.a fad,pnz63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2c72.a fad.rsa66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . H . .
[1]2c73.b fad.rsa66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . F . .
[1]2c75.a fad.rsa66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . L . .
[1]2c76.a fad.rsa66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . W . .
[1]2v5z.a fad,sag75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[1]2v60.b c17,fad75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2v61.a c18,fad75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2vrl.b fad.mbn60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2vrm.b fad.pyj61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2vz2.a fad.mfg66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xcg.b fa8.3pl,xcg77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xfn.a fad,xcg67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xfo.a fa8.3pl,xcg77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xfo.b fad.3pl,xcg77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xfp.b fad,isn,xcg78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xfq.b fad.ras,xcg80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]2xfu.a fa8.3pl63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]3po7.a fad,zon67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]3zyx.b fad,mbt73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . A . . . . * . . . . . . .
[1]4a79.b fad,p1b78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]4a7a.a fad,rgz72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]4crt.a fad.ass72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .
[1]5mrl.a fad.f2m64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . .

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Site contact map

[download in TSV format]
   
PDB.ch
A1
V
1
0
G
1
1
G
1
2
G
1
3
I
1
4
S
1
5
L
3
3
E
3
4
A
3
5
R
3
6
G
4
0
G
4
1
R
4
2
T
4
3
L
5
6
G
5
7
G
5
8
S
5
9
Y
6
0
E
8
4
L
8
8
G
1
0
1
P
1
0
2
F
1
0
3
P
1
0
4
W
1
1
9
L
1
6
4
L
1
6
7
F
1
6
8
L
1
7
1
C
1
7
2
Y
1
8
8
T
1
9
5
I
1
9
8
I
1
9
9
S
2
0
0
T
2
0
1
Q
2
0
6
R
2
3
3
P
2
3
4
V
2
3
5
A
2
6
3
I
2
6
4
P
2
6
5
L
2
6
8
K
2
7
1
V
2
9
4
K
2
9
6
T
3
1
4
I
3
1
6
Y
3
2
6
T
3
2
7
L
3
2
8
F
3
4
3
W
3
8
8
Y
3
9
3
C
3
9
7
Y
3
9
8
G
4
2
5
T
4
2
6
G
4
3
4
Y
4
3
5
M
4
3
6
A
4
3
9
[1]1gos.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1oj9.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1oja.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1ojc.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1s2q.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1s2y.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1s3b.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]1s3e.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2bk3.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2bk4.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . F . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2bk5.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . F . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2byb.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c64.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c64.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c65.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c66.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c67.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c70.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2c72.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . . . H . .
[1]2c73.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . F . .
[1]2c75.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . L . .
[1]2c76.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . * . . . . . . . . . . . . * . . . . . * . . . . W . .
[1]2v5z.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2v60.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2v61.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2vrl.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2vrm.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2vz2.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xcg.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . * . . * . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xfn.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xfo.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . A . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xfo.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . A . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xfp.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xfq.b . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]2xfu.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]3po7.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]3zyx.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . A . . . . . * . . . . . . .
[1]4a79.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]4a7a.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]4crt.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .
[1]5mrl.a . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . * . . . . . . .

Legend

B backbone contact  S side chain contact  F BB + SCh
.
 no contact C covalent bond
X X X X X  clash
X mutation to X * complex cases - deletion
M contact with cofactors/metals (if any)

Pocket-ligand steric compatibility

Ligands (x) vs pockets (y) colored by number of steric clashes

zoom: [−] [+]; [view as image]; [download as text]

pocketligand
≥10
9
8
7
6
5
4
3
2
1
0
1gos.b:fad.nyp
1oj9.a:1pb,fad
1oja.a:fad,isn
1ojc.a:fad.laz
1s2q.a:fad.ras
1s2y.a:fad.rsa
1s3b.b:fad.rma
1s3e.a:fad.rhp
2bk3.a:fad,foh
2bk4.a:fad.ras
2bk5.a:fad,isn
2byb.a:fad.dpk
2c64.a:fad
2c64.b:fad.ma0
2c65.a:fad.4cr
2c66.b:fad.rm2
2c67.a:fad,rm1
2c70.a:fad,pnz
2c72.a:fad.rsa
2c73.b:fad.rsa
2c75.a:fad.rsa
2c76.a:fad.rsa
2v5z.a:fad,sag
2v60.b:c17,fad
2v61.a:c18,fad
2vrl.b:fad.mbn
2vrm.b:fad.pyj
2vz2.a:fad.mfg
2xcg.b:fa8.3pl,xcg
2xfn.a:fad,xcg
2xfo.a:fa8.3pl,xcg
2xfo.b:fad.3pl,xcg
2xfp.b:fad,isn,xcg
2xfq.b:fad.ras,xcg
2xfu.a:fa8.3pl
3po7.a:fad,zon
3zyx.b:fad,mbt
4a79.b:fad,p1b
4a7a.a:fad,rgz
4crt.a:fad.ass
5mrl.a:fad.f2m
[1] 1gos.b
1.1
1.1 0.9 0.9 0.8 1.5 1.1 1.0 0.9 0.9 0.9 1.0 0.7 0.8 1.1 0.8 1.0 0.9 1.0 0.8 1.2 1.2 0.7 0.8 1.1 0.8 0.8 0.9 1.5 1.2 1.2 1.6 1.3 1.2 1.2 0.7 2.9 2.2 1.0 1.0 0.9
[1] 1oj9.a 1.2
0.6
0.6 0.6 0.6 1.2 0.7 0.6 0.4 0.7 0.6 0.6 0.6 0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 0.3 0.6 0.6 0.6 0.6 0.6 1.4 0.8 1.0 1.4 1.0 1.1 0.9 0.4 2.4 2.9 0.6 0.7 0.6
[1] 1oja.a 1.7 1.7
0.6
1.0 1.1 1.3 0.9 1.1 1.6 1.1 0.6 1.8 0.7 1.1 1.6 1.2 0.6 0.8 0.6 0.9 0.9 1.0 1.4 1.2 1.5 0.8 0.6 1.0 1.4 0.8 1.3 1.2 0.6 1.1 1.0 0.6 3.1 1.9 1.5 1.7 1.0
[1] 1ojc.a 1.5 0.6 0.6
0.6
0.8 1.2 0.8 0.7 0.5 0.6 0.6 0.9 0.6 0.9 0.8 0.8 0.6 0.7 0.6 0.7 0.8 0.7 0.4 0.7 0.6 0.7 0.6 0.6 1.6 0.8 1.4 1.4 0.8 1.3 1.1 0.4 2.6 2.3 0.6 0.8 0.6
[1] 1s2q.a 1.2 0.6 0.5 0.6
0.6
1.1 0.7 0.6 0.4 0.6 0.4 0.8 0.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.3 0.4 0.4 0.4 0.4 0.4 1.3 0.6 1.2 1.1 0.6 1.1 1.1 0.4 2.4 1.7 0.6 0.7 0.6
[1] 1s2y.a 1.8 1.2 0.6 0.9 0.9
0.6
0.9 0.8 1.2 0.8 0.6 1.3 0.6 0.9 1.4 1.2 0.6 0.8 0.6 0.7 0.8 0.8 1.0 1.3 1.2 0.8 0.4 0.7 2.2 1.8 2.5 2.0 1.5 1.5 1.1 0.6 3.5 1.4 1.2 1.4 0.8
[1] 1s3b.b 1.6 0.8 0.6 0.8 0.9 1.2
0.6
0.7 0.5 0.8 0.7 1.1 0.7 0.6 0.7 0.7 0.6 0.7 0.6 0.6 0.6 0.7 0.4 0.7 0.6 0.8 0.4 0.7 1.5 0.8 1.1 1.0 0.7 1.1 1.0 0.4 2.6 1.6 0.7 0.6 0.8
[1] 1s3e.a 1.2 0.6 0.6 0.6 0.6 1.2 0.7
0.6
0.4 0.6 0.6 0.9 0.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.3 0.6 0.6 0.6 0.6 0.6 1.4 0.8 1.1 1.2 0.9 1.1 1.0 0.4 2.4 2.9 0.6 0.7 0.6
[1] 2bk3.a 1.4 0.6 0.6 0.6 0.7 1.2 0.6 0.6
0.4
0.7 0.6 0.6 0.6 0.8 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.3 0.6 0.6 0.6 0.6 0.6 1.2 0.8 1.0 1.3 0.9 1.3 1.0 0.4 2.6 2.8 0.6 0.6 0.6
[1] 2bk4.a 1.3 3.5 0.4 0.6 0.7 1.2 0.7 0.6 3.5
0.6
0.6 1.6 0.6 0.7 3.5 0.7 0.6 0.6 0.6 0.6 0.6 0.6 3.0 2.8 3.4 0.4 0.4 0.4 4.2 3.3 3.9 4.0 3.5 3.3 1.1 0.5 2.6 5.6 3.5 3.2 0.6
[1] 2bk5.a 1.6 3.7 0.6 1.0 1.0 1.2 0.9 0.9 4.0 0.9
0.6
1.9 0.7 1.0 3.7 1.0 0.6 0.7 0.6 0.8 0.8 0.9 3.7 3.5 3.8 0.8 0.6 0.6 4.4 3.8 4.6 4.1 3.5 3.7 1.0 0.5 2.8 7.0 4.0 3.7 0.9
[1] 2byb.a 1.3 0.6 0.7 0.6 0.7 1.2 0.6 0.6 0.4 0.7 0.7
0.7
0.7 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.7 0.3 0.6 0.7 0.6 0.5 0.4 0.9 0.5 0.7 1.0 0.6 0.7 0.8 0.4 2.6 1.7 0.6 0.8 0.6
[1] 2c64.a 1.5 0.8 0.6 0.8 0.9 1.2 0.6 0.8 0.4 0.8 0.6 0.8
0.7
0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.4 0.8 0.6 0.8 0.6 0.7 1.6 0.9 1.2 1.0 1.0 1.2 0.8 0.4 2.5 3.0 0.7 0.6 0.8
[1] 2c64.b 1.7 0.8 0.6 0.8 0.8 1.2 0.7 0.8 0.6 0.8 0.7 0.9 0.6
0.7
0.8 0.7 0.6 0.7 0.6 0.6 0.7 0.8 0.4 0.8 0.6 0.7 0.6 0.7 1.1 1.0 1.2 1.1 0.8 1.3 0.8 0.5 2.7 1.9 0.8 0.7 0.8
[1] 2c65.a 1.6 0.8 0.5 0.9 0.9 1.3 0.6 0.7 0.6 0.9 0.5 1.0 0.7 0.6
0.6
0.8 0.6 0.7 0.6 0.7 0.7 0.8 0.5 0.8 0.5 0.6 0.5 0.5 1.9 0.9 1.5 1.1 1.2 1.2 1.0 0.4 2.4 3.0 0.7 0.6 0.8
[1] 2c66.b 1.4 0.7 0.6 0.7 0.7 1.1 0.7 0.7 0.4 0.6 0.6 0.7 0.6 0.7 0.7
0.7
0.7 0.6 0.6 0.6 0.6 0.6 0.3 0.7 0.6 0.7 0.6 0.7 1.6 0.9 1.4 1.5 0.7 0.9 1.2 0.4 2.6 1.1 0.6 0.7 0.6
[1] 2c67.a 1.8 1.6 0.6 0.9 1.1 1.2 0.9 0.9 1.5 1.0 0.6 1.8 0.7 1.0 1.7 1.2
0.6
0.7 0.6 0.9 0.9 0.9 1.1 1.2 1.5 0.8 0.6 0.9 1.9 0.9 1.2 1.3 1.0 1.4 1.0 0.6 2.9 2.8 1.6 1.6 1.0
[1] 2c70.a 1.6 0.7 0.6 0.7 0.9 1.3 0.9 0.7 0.6 0.8 0.6 1.0 0.7 0.8 0.7 0.8 0.6
0.6
0.6 0.6 0.7 0.8 0.4 0.6 0.7 0.7 0.6 0.7 1.8 0.9 1.2 1.3 1.0 1.2 1.1 0.5 2.6 2.8 0.7 0.8 0.7
[1] 2c72.a 2.0 1.8 0.6 1.1 1.1 1.3 0.9 1.1 1.9 1.2 0.7 2.4 0.8 1.1 1.7 1.3 0.6 1.1
0.7
0.9 1.1 1.0 1.7 1.5 1.5 0.9 0.6 1.2 1.5 0.9 1.2 1.1 0.7 1.2 1.2 1.0 3.3 2.1 1.9 1.9 1.0
[1] 2c73.b 1.3 0.6 0.5 0.5 0.8 1.2 0.7 0.5 0.5 0.7 0.4 0.9 0.5 0.5 0.9 0.5 0.4 0.4 0.4
0.6
0.5 0.4 0.5 0.7 0.5 0.6 0.4 0.5 1.5 0.7 1.2 1.1 1.1 1.3 0.9 0.6 2.9 2.7 0.6 0.6 0.6
[1] 2c75.a 1.7 0.9 0.6 0.9 0.9 1.1 0.7 0.6 0.6 0.8 0.6 1.1 0.6 0.8 0.9 0.8 0.9 0.6 0.6 0.7
0.6
0.7 0.5 0.7 0.6 0.8 0.6 0.9 2.0 1.1 1.7 1.4 1.0 1.1 1.3 0.5 2.4 3.1 0.7 0.7 0.8
[1] 2c76.a 2.0 0.9 0.6 0.7 0.8 0.9 0.8 0.7 0.6 0.6 0.6 1.2 0.6 1.1 0.9 0.7 0.8 0.6 0.6 0.6 0.6
0.7
1.1 0.7 0.6 0.9 0.6 0.6 2.1 1.1 1.5 1.5 1.0 1.1 1.4 0.5 2.6 3.3 0.7 0.8 0.9
[1] 2v5z.a 1.0 0.4 0.4 0.4 0.8 1.2 0.7 0.4 0.4 0.7 0.4 0.9 0.4 0.6 0.7 0.4 0.4 0.4 0.4 0.6 0.5 0.5
0.3
0.4 0.4 0.4 0.4 0.4 1.2 0.6 1.0 1.1 0.8 1.3 0.8 0.4 2.4 2.8 0.4 0.5 0.4
[1] 2v60.b 1.2 0.7 0.6 0.7 0.8 1.2 0.7 0.6 0.4 0.7 0.6 1.0 0.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.3
0.6
0.6 0.6 0.6 0.6 1.3 0.8 1.2 1.1 0.8 1.1 1.0 0.4 2.4 3.1 0.6 0.7 0.6
[1] 2v61.a 1.6 0.8 0.6 0.8 1.0 1.2 0.8 0.7 0.5 0.8 0.6 1.2 0.6 0.9 0.8 0.8 0.6 0.6 0.6 0.7 0.7 0.7 0.4 0.7
0.6
0.8 0.6 0.6 1.7 0.8 1.3 1.2 1.0 1.3 1.0 0.4 2.5 3.2 0.6 0.7 0.6
[1] 2vrl.b 1.2 0.7 0.6 0.6 0.6 1.2 0.7 0.6 0.5 0.7 0.6 0.8 0.6 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 0.4 0.7 0.7
0.6
0.6 0.6 1.3 0.8 0.8 1.4 0.8 1.1 0.9 0.5 2.8 2.9 0.6 0.8 0.7
[1] 2vrm.b 1.6 0.9 0.6 0.8 1.1 1.2 0.9 0.9 0.7 1.0 0.6 1.2 0.6 0.9 1.0 0.9 0.7 0.7 0.6 0.8 0.8 0.9 0.8 0.8 0.7 0.8
0.6
0.7 2.0 0.9 1.1 1.4 1.2 1.4 1.1 0.5 2.6 3.7 0.9 0.9 0.9
[1] 2vz2.a 1.6 0.7 0.6 0.6 0.7 1.2 0.8 0.6 0.5 0.7 0.6 1.0 0.6 0.8 0.9 0.7 0.6 0.6 0.6 0.6 0.7 0.7 0.4 0.6 0.7 0.7 0.6
0.6
1.8 0.8 1.4 1.4 1.2 1.2 1.1 0.4 2.4 2.4 0.7 0.8 0.6
[1] 2xcg.b 1.7 1.7 0.5 1.2 1.1 1.7 1.2 1.1 1.6 1.1 0.7 2.0 0.6 1.4 1.9 1.6 0.7 1.0 1.1 0.9 1.5 1.3 1.5 1.6 1.8 0.4 0.4 0.8
0.6
0.5 0.8 0.9 0.5 1.1 0.6 1.1 3.6 5.2 1.8 1.9 1.0
[1] 2xfn.a 1.7 0.7 0.6 0.6 0.7 1.2 0.8 0.6 0.6 0.8 0.6 1.2 0.6 0.9 0.8 0.9 0.6 0.6 0.6 0.7 0.8 0.7 0.5 0.6 0.7 0.8 0.6 0.6 1.2
0.7
1.1 1.1 0.5 0.8 1.0 0.5 2.7 3.7 0.6 0.8 0.6
[1] 2xfo.a 1.6 0.8 0.5 1.0 0.9 1.7 0.9 0.8 0.7 1.0 0.5 1.2 0.4 0.8 0.9 1.1 0.7 0.4 0.6 0.8 1.0 1.0 0.8 1.0 0.8 0.6 0.4 0.5 0.9 0.4
0.7
0.4 0.6 0.9 0.6 0.6 3.3 3.9 1.1 1.1 0.7
[1] 2xfo.b 1.4 0.8 0.6 0.9 1.1 1.7 0.9 0.8 0.9 0.9 0.8 1.1 0.7 0.9 0.9 1.0 0.6 0.7 0.7 0.9 0.9 0.8 0.7 1.0 0.8 0.9 0.6 0.7 0.8 0.7 0.9
0.6
0.5 1.3 0.6 0.6 3.1 4.1 0.9 1.0 0.9
[1] 2xfp.b 1.8 1.6 0.6 0.9 1.0 1.2 0.9 0.9 1.5 0.9 0.7 2.0 0.7 1.0 1.7 1.2 0.7 0.9 0.6 0.8 1.0 1.0 1.4 1.0 1.5 0.8 0.6 1.0 1.3 0.7 1.4 1.2
0.4
1.0 1.1 0.7 3.1 5.2 1.7 1.8 0.8
[1] 2xfq.b 1.4 0.7 0.4 0.6 0.6 0.9 0.7 0.6 0.5 0.6 0.4 0.8 0.6 0.7 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.4 0.4 0.4 1.2 0.5 1.2 1.1 0.4
0.6
1.1 0.5 2.8 3.7 0.7 0.8 0.6
[1] 2xfu.a 1.7 1.7 0.6 1.2 1.0 1.6 1.0 0.9 1.7 0.9 0.7 1.9 0.6 0.8 1.8 1.3 0.7 0.9 0.8 0.7 1.0 0.9 1.7 1.8 1.8 0.8 0.6 1.0 0.9 0.6 0.9 0.8 0.5 1.0
0.6
0.8 3.1 2.0 1.7 1.9 1.0
[1] 3po7.a 1.5 0.7 0.6 0.8 0.9 1.2 0.8 0.6 0.6 0.9 0.6 0.9 0.6 1.0 0.8 0.9 0.6 0.6 0.6 0.7 0.8 0.8 0.4 0.7 0.6 0.8 0.6 0.6 1.8 0.9 1.3 1.2 1.0 1.2 1.0
0.4
2.4 3.0 0.6 0.7 0.8
[1] 3zyx.b 1.2 0.6 0.4 0.6 0.7 0.6 0.8 0.6 0.5 0.6 0.4 0.9 0.6 0.8 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.3 0.6 0.4 0.4 0.4 0.4 1.1 0.6 0.7 1.1 0.6 0.9 1.2 0.4
0.7
0.9 0.6 0.7 0.6
[1] 4a79.b 1.2 0.7 0.6 0.7 0.8 1.2 0.7 0.6 0.4 0.7 0.6 0.8 0.6 0.8 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.3 0.6 0.6 0.6 0.6 0.6 1.2 0.7 0.9 1.3 0.6 0.9 1.0 0.4 2.4
0.6
0.6 0.6 0.6
[1] 4a7a.a 1.2 0.6 0.6 0.6 0.8 1.2 0.8 0.6 0.4 0.7 0.6 0.9 0.6 0.9 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.3 0.6 0.6 0.6 0.6 0.6 1.5 0.8 0.9 1.2 0.9 1.2 1.0 0.4 2.4 2.7
0.6
0.7 0.6
[1] 4crt.a 1.5 0.6 0.6 0.7 0.9 1.2 0.7 0.6 0.5 0.7 0.6 0.9 0.6 0.8 0.7 0.9 0.6 0.6 0.6 0.7 0.8 0.7 0.4 0.7 0.6 0.8 0.4 0.6 1.7 0.8 0.9 1.2 1.0 1.1 1.0 0.4 2.4 2.9 0.6
0.7
0.7
[1] 5mrl.a 1.5 0.6 0.6 0.7 0.8 1.2 0.8 0.6 0.5 0.8 0.6 0.7 0.6 0.8 0.7 0.8 0.6 0.6 0.6 0.6 0.8 0.7 0.3 0.7 0.6 0.8 0.6 0.6 1.4 0.7 0.9 1.3 0.6 1.1 1.1 0.4 2.8 2.7 0.6 0.7
0.7
[Pocket-ligand steric clashes matrix]

Pocket clash dissimilarity (1 cluster)

Pockets (x) vs pockets (y) colored by ligand clash profile difference

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥1.
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
1gos.b
1oj9.a
1oja.a
1ojc.a
1s2q.a
1s2y.a
1s3b.b
1s3e.a
2bk3.a
2bk4.a
2bk5.a
2byb.a
2c64.a
2c64.b
2c65.a
2c66.b
2c67.a
2c70.a
2c72.a
2c73.b
2c75.a
2c76.a
2v5z.a
2v60.b
2v61.a
2vrl.b
2vrm.b
2vz2.a
2xcg.b
2xfn.a
2xfo.a
2xfo.b
2xfp.b
2xfq.b
2xfu.a
3po7.a
3zyx.b
4a79.b
4a7a.a
4crt.a
5mrl.a
[1] 1gos.b
0
.04 .07 .05 .03 .06 .06 .04 .04 .10 .12 .03 .05 .04 .05 .04 .05 .05 .07 .05 .05 .07 .04 .05 .05 .04 .07 .05 .08 .06 .07 .07 .10 .06 .06 .04 .07 .05 .04 .04 .04
[1] 1oj9.a .04
0
.07 .03 .03 .07 .05 .01 .01 .06 .08 .03 .02 .04 .03 .05 .04 .02 .07 .04 .03 .04 .01 .02 .02 .03 .05 .03 .08 .05 .05 .06 .09 .04 .06 .01 .07 .05 .01 .01 .03
[1] 1oja.a .07 .07
0
.05 .05 .03 .04 .06 .07 .09 .09 .05 .07 .05 .07 .03 .03 .05 .01 .07 .06 .07 .07 .06 .06 .07 .06 .05 .07 .06 .06 .08 .07 .08 .01 .06 .06 .03 .06 .06 .06
[1] 1ojc.a .05 .03 .05
0
.03 .06 .05 .03 .03 .08 .08 .04 .03 .05 .05 .05 .03 .02 .05 .02 .03 .03 .03 .02 .02 .03 .03 .01 .06 .03 .03 .04 .07 .04 .05 .03 .08 .05 .04 .03 .02
[1] 1s2q.a .03 .03 .05 .03
0
.05 .04 .03 .03 .08 .10 .02 .04 .03 .05 .03 .03 .03 .05 .04 .04 .06 .03 .03 .04 .03 .05 .03 .07 .06 .05 .05 .09 .06 .04 .03 .05 .03 .03 .03 .03
[1] 1s2y.a .06 .07 .03 .06 .05
0
.05 .06 .07 .10 .11 .05 .07 .05 .07 .03 .05 .06 .04 .07 .07 .08 .07 .07 .06 .07 .07 .05 .09 .08 .08 .09 .09 .08 .04 .06 .07 .04 .06 .06 .06
[1] 1s3b.b .06 .05 .04 .05 .04 .05
0
.04 .04 .10 .10 .05 .03 .02 .03 .03 .05 .03 .05 .06 .04 .05 .05 .04 .04 .07 .07 .05 .10 .06 .07 .08 .10 .06 .05 .04 .07 .04 .04 .03 .04
[1] 1s3e.a .04 .01 .06 .03 .03 .06 .04
0
.02 .06 .08 .04 .02 .04 .03 .05 .04 .02 .07 .04 .02 .04 .01 .01 .02 .03 .05 .03 .08 .05 .05 .06 .09 .04 .06 .01 .07 .05 .01 .01 .03
[1] 2bk3.a .04 .01 .07 .03 .03 .07 .04 .02
0
.07 .09 .04 .03 .04 .02 .04 .04 .01 .06 .04 .03 .04 .02 .02 .02 .04 .05 .04 .08 .05 .05 .05 .09 .04 .06 .02 .07 .05 .01 .02 .02
[1] 2bk4.a .10 .06 .09 .08 .08 .10 .10 .06 .07
0
.02 .10 .07 .09 .08 .10 .07 .07 .09 .08 .07 .08 .06 .06 .06 .07 .08 .07 .10 .09 .09 .10 .10 .08 .09 .07 .13 .10 .07 .06 .08
[1] 2bk5.a .12 .08 .09 .08 .10 .11 .10 .08 .09 .02
0
.12 .08 .10 .09 .11 .07 .08 .10 .08 .07 .08 .08 .07 .07 .09 .07 .08 .09 .07 .08 .09 .08 .09 .10 .08 .15 .12 .09 .07 .09
[1] 2byb.a .03 .03 .05 .04 .02 .05 .05 .04 .04 .10 .12
0
.05 .04 .05 .03 .05 .05 .05 .05 .05 .06 .04 .05 .05 .04 .06 .04 .07 .05 .05 .06 .09 .05 .04 .04 .05 .03 .03 .04 .04
[1] 2c64.a .05 .02 .07 .03 .04 .07 .03 .02 .03 .07 .08 .05
0
.02 .02 .05 .04 .02 .07 .04 .01 .03 .02 .02 .01 .04 .05 .03 .08 .05 .05 .05 .09 .03 .07 .01 .08 .06 .03 .02 .02
[1] 2c64.b .04 .04 .05 .05 .03 .05 .02 .04 .04 .09 .10 .04 .02
0
.03 .03 .05 .03 .06 .05 .04 .05 .04 .04 .04 .05 .07 .04 .10 .07 .07 .07 .10 .05 .06 .03 .07 .05 .04 .03 .03
[1] 2c65.a .05 .03 .07 .05 .05 .07 .03 .03 .02 .08 .09 .05 .02 .03
0
.05 .04 .02 .07 .05 .03 .04 .03 .03 .02 .06 .06 .04 .10 .06 .07 .07 .10 .05 .08 .02 .08 .06 .02 .02 .04
[1] 2c66.b .04 .05 .03 .05 .03 .03 .03 .05 .04 .10 .11 .03 .05 .03 .05
0
.05 .05 .04 .05 .06 .07 .05 .05 .05 .05 .07 .05 .08 .06 .06 .07 .09 .05 .03 .05 .05 .02 .05 .05 .04
[1] 2c67.a .05 .04 .03 .03 .03 .05 .05 .04 .04 .07 .07 .05 .04 .05 .04 .05
0
.03 .03 .04 .03 .05 .04 .04 .03 .05 .04 .02 .06 .05 .05 .06 .06 .06 .04 .03 .08 .05 .04 .03 .04
[1] 2c70.a .05 .02 .05 .02 .03 .06 .03 .02 .01 .07 .08 .05 .02 .03 .02 .05 .03
0
.05 .04 .02 .03 .02 .02 .01 .05 .04 .02 .08 .04 .05 .06 .08 .04 .06 .02 .08 .05 .02 .01 .02
[1] 2c72.a .07 .07 .01 .05 .05 .04 .05 .07 .06 .09 .10 .05 .07 .06 .07 .04 .03 .05
0
.06 .06 .07 .07 .07 .06 .07 .07 .05 .07 .06 .06 .08 .06 .08 .02 .06 .07 .03 .06 .06 .06
[1] 2c73.b .05 .04 .07 .02 .04 .07 .06 .04 .04 .08 .08 .05 .04 .05 .05 .05 .04 .04 .06
0
.04 .05 .03 .04 .04 .02 .03 .03 .05 .03 .03 .03 .07 .04 .06 .04 .08 .06 .05 .04 .03
[1] 2c75.a .05 .03 .06 .03 .04 .07 .04 .02 .03 .07 .07 .05 .01 .04 .03 .06 .03 .02 .06 .04
0
.02 .02 .01 .01 .04 .04 .02 .09 .04 .05 .06 .08 .04 .07 .02 .09 .06 .02 .02 .03
[1] 2c76.a .07 .04 .07 .03 .06 .08 .05 .04 .04 .08 .08 .06 .03 .05 .04 .07 .05 .03 .07 .05 .02
0
.04 .03 .02 .05 .05 .04 .08 .04 .05 .06 .09 .04 .08 .03 .10 .08 .04 .03 .03
[1] 2v5z.a .04 .01 .07 .03 .03 .07 .05 .01 .02 .06 .08 .04 .02 .04 .03 .05 .04 .02 .07 .03 .02 .04
0
.01 .01 .03 .05 .03 .07 .05 .05 .05 .09 .04 .07 .01 .08 .05 .02 .02 .02
[1] 2v60.b .05 .02 .06 .02 .03 .07 .04 .01 .02 .06 .07 .05 .02 .04 .03 .05 .04 .02 .07 .04 .01 .03 .01
0
.01 .04 .04 .02 .08 .05 .05 .05 .08 .03 .07 .02 .08 .06 .02 .01 .02
[1] 2v61.a .05 .02 .06 .02 .04 .06 .04 .02 .02 .06 .07 .05 .01 .04 .02 .05 .03 .01 .06 .04 .01 .02 .01 .01
0
.04 .04 .02 .08 .04 .05 .05 .08 .04 .07 .01 .08 .06 .02 .01 .02
[1] 2vrl.b .04 .03 .07 .03 .03 .07 .07 .03 .04 .07 .09 .04 .04 .05 .06 .05 .05 .05 .07 .02 .04 .05 .03 .04 .04
0
.03 .03 .05 .04 .04 .04 .07 .04 .06 .04 .07 .05 .04 .04 .03
[1] 2vrm.b .07 .05 .06 .03 .05 .07 .07 .05 .05 .08 .07 .06 .05 .07 .06 .07 .04 .04 .07 .03 .04 .05 .05 .04 .04 .03
0
.02 .05 .02 .02 .03 .05 .05 .07 .05 .09 .06 .05 .04 .04
[1] 2vz2.a .05 .03 .05 .01 .03 .05 .05 .03 .04 .07 .08 .04 .03 .04 .04 .05 .02 .02 .05 .03 .02 .04 .03 .02 .02 .03 .02
0
.07 .04 .03 .05 .07 .05 .05 .03 .07 .04 .03 .02 .02
[1] 2xcg.b .08 .08 .07 .06 .07 .09 .10 .08 .08 .10 .09 .07 .08 .10 .10 .08 .06 .08 .07 .05 .09 .08 .07 .08 .08 .05 .05 .07
0
.04 .04 .04 .03 .06 .07 .08 .11 .08 .09 .08 .06
[1] 2xfn.a .06 .05 .06 .03 .06 .08 .06 .05 .05 .09 .07 .05 .05 .07 .06 .06 .05 .04 .06 .03 .04 .04 .05 .05 .04 .04 .02 .04 .04
0
.01 .02 .05 .04 .07 .05 .09 .06 .05 .05 .04
[1] 2xfo.a .07 .05 .06 .03 .05 .08 .07 .05 .05 .09 .08 .05 .05 .07 .07 .06 .05 .05 .06 .03 .05 .05 .05 .05 .05 .04 .02 .03 .04 .01
0
.02 .05 .04 .07 .05 .09 .06 .06 .05 .04
[1] 2xfo.b .07 .06 .08 .04 .05 .09 .08 .06 .05 .10 .09 .06 .05 .07 .07 .07 .06 .06 .08 .03 .06 .06 .05 .05 .05 .04 .03 .05 .04 .02 .02
0
.05 .04 .07 .05 .09 .07 .07 .05 .04
[1] 2xfp.b .10 .09 .07 .07 .09 .09 .10 .09 .09 .10 .08 .09 .09 .10 .10 .09 .06 .08 .06 .07 .08 .09 .09 .08 .08 .07 .05 .07 .03 .05 .05 .05
0
.07 .07 .09 .13 .09 .10 .08 .07
[1] 2xfq.b .06 .04 .08 .04 .06 .08 .06 .04 .04 .08 .09 .05 .03 .05 .05 .05 .06 .04 .08 .04 .04 .04 .04 .03 .04 .04 .05 .05 .06 .04 .04 .04 .07
0
.07 .04 .10 .07 .05 .04 .03
[1] 2xfu.a .06 .06 .01 .05 .04 .04 .05 .06 .06 .09 .10 .04 .07 .06 .08 .03 .04 .06 .02 .06 .07 .08 .07 .07 .07 .06 .07 .05 .07 .07 .07 .07 .07 .07
0
.06 .07 .03 .07 .06 .06
[1] 3po7.a .04 .01 .06 .03 .03 .06 .04 .01 .02 .07 .08 .04 .01 .03 .02 .05 .03 .02 .06 .04 .02 .03 .01 .02 .01 .04 .05 .03 .08 .05 .05 .05 .09 .04 .06
0
.08 .06 .01 .01 .02
[1] 3zyx.b .07 .07 .06 .08 .05 .07 .07 .07 .07 .13 .15 .05 .08 .07 .08 .05 .08 .08 .07 .08 .09 .10 .08 .08 .08 .07 .09 .07 .11 .09 .09 .09 .13 .10 .07 .08
0
.04 .07 .07 .08
[1] 4a79.b .05 .05 .03 .05 .03 .04 .04 .05 .05 .10 .12 .03 .06 .05 .06 .02 .05 .05 .03 .06 .06 .08 .05 .06 .06 .05 .06 .04 .08 .06 .06 .07 .09 .07 .03 .06 .04
0
.04 .05 .06
[1] 4a7a.a .04 .01 .06 .04 .03 .06 .04 .01 .01 .07 .09 .03 .03 .04 .02 .05 .04 .02 .06 .05 .02 .04 .02 .02 .02 .04 .05 .03 .09 .05 .06 .07 .10 .05 .07 .01 .07 .04
0
.01 .03
[1] 4crt.a .04 .01 .06 .03 .03 .06 .03 .01 .02 .06 .07 .04 .02 .03 .02 .05 .03 .01 .06 .04 .02 .03 .02 .01 .01 .04 .04 .02 .08 .05 .05 .05 .08 .04 .06 .01 .07 .05 .01
0
.02
[1] 5mrl.a .04 .03 .06 .02 .03 .06 .04 .03 .02 .08 .09 .04 .02 .03 .04 .04 .04 .02 .06 .03 .03 .03 .02 .02 .02 .03 .04 .02 .06 .04 .04 .04 .07 .03 .06 .02 .08 .06 .03 .02
0
[Pocket clash dissimilarity matrix]

Site backbone RMSD (median 0.4 Å)

Pockets (x) vs pockets (y) colored by RMSD of site residue backbone atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
1gos.b
1oj9.a
1oja.a
1ojc.a
1s2q.a
1s2y.a
1s3b.b
1s3e.a
2bk3.a
2bk4.a
2bk5.a
2byb.a
2c64.a
2c64.b
2c65.a
2c66.b
2c67.a
2c70.a
2c72.a
2c73.b
2c75.a
2c76.a
2v5z.a
2v60.b
2v61.a
2vrl.b
2vrm.b
2vz2.a
2xcg.b
2xfn.a
2xfo.a
2xfo.b
2xfp.b
2xfq.b
2xfu.a
3po7.a
3zyx.b
4a79.b
4a7a.a
4crt.a
5mrl.a
[1] 1gos.b
0
0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.6
[1] 1oj9.a 0.6
0
0.4 0.1 0.2 0.3 0.2 0.1 0.1 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.1 0.4 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1 0.1 0.1
[1] 1oja.a 0.6 0.4
0
0.3 0.4 0.2 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.5 0.3 0.3 0.4 0.1 0.3 0.4 0.4 0.3 0.4 0.3 0.3 0.3 0.4 0.6 0.4 0.5 0.3 0.6 0.4 0.2 0.4 0.3 0.3 0.4 0.3 0.3
[1] 1ojc.a 0.6 0.1 0.3
0
0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.1 0.3 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.3 0.2 0.3 0.2 0.4 0.3 0.3 0.1 0.3 0.2 0.2 0.1 0.1
[1] 1s2q.a 0.5 0.2 0.4 0.2
0
0.3 0.2 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2
[1] 1s2y.a 0.6 0.3 0.2 0.3 0.3
0
0.2 0.3 0.4 0.3 0.4 0.2 0.3 0.3 0.4 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.5 0.4 0.4 0.3 0.5 0.4 0.2 0.3 0.2 0.3 0.3 0.3 0.3
[1] 1s3b.b 0.5 0.2 0.3 0.1 0.2 0.2
0
0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.2
[1] 1s3e.a 0.5 0.1 0.4 0.1 0.1 0.3 0.1
0
0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.1 0.4 0.3 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.2 0.4 0.1 0.3 0.2 0.1 0.1 0.1
[1] 2bk3.a 0.6 0.1 0.4 0.2 0.2 0.4 0.2 0.1
0
0.1 0.2 0.3 0.2 0.3 0.1 0.4 0.2 0.1 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.5 0.1 0.4 0.2 0.1 0.2 0.2
[1] 2bk4.a 0.6 0.1 0.4 0.2 0.2 0.3 0.2 0.1 0.1
0
0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.1 0.4 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1 0.1 0.2
[1] 2bk5.a 0.6 0.2 0.4 0.2 0.3 0.4 0.2 0.2 0.2 0.2
0
0.3 0.2 0.3 0.2 0.4 0.1 0.1 0.4 0.3 0.1 0.2 0.2 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.5 0.1 0.4 0.3 0.2 0.1 0.2
[1] 2byb.a 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3
0
0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2
[1] 2c64.a 0.6 0.2 0.4 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.3
0
0.2 0.2 0.3 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.3 0.2 0.4 0.3 0.4 0.2 0.3 0.2 0.2 0.2 0.2
[1] 2c64.b 0.5 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.2
0
0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.4 0.3 0.4 0.2 0.4 0.3 0.4 0.2 0.3 0.2 0.2 0.2 0.2
[1] 2c65.a 0.6 0.2 0.5 0.2 0.3 0.4 0.2 0.2 0.1 0.2 0.2 0.3 0.2 0.3
0
0.4 0.2 0.1 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.5 0.1 0.4 0.3 0.2 0.2 0.2
[1] 2c66.b 0.5 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.2 0.3 0.2 0.4
0
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.5 0.4 0.4 0.3 0.5 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3
[1] 2c67.a 0.6 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3
0
0.1 0.3 0.3 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.2 0.1 0.2
[1] 2c70.a 0.6 0.1 0.4 0.1 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.3 0.2 0.2 0.1 0.3 0.1
0
0.4 0.3 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1 0.1 0.1
[1] 2c72.a 0.6 0.4 0.1 0.3 0.3 0.2 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.4
0
0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.6 0.4 0.5 0.3 0.5 0.4 0.2 0.4 0.3 0.3 0.4 0.3 0.3
[1] 2c73.b 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.3
0
0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.4 0.4 0.3 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3
[1] 2c75.a 0.6 0.2 0.4 0.1 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.3
0
0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1 0.1 0.1
[1] 2c76.a 0.6 0.2 0.4 0.1 0.2 0.3 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.2 0.1
0
0.1 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.2 0.1 0.1
[1] 2v5z.a 0.5 0.1 0.3 0.1 0.1 0.3 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.1
0
0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3 0.1 0.1 0.1 0.2
[1] 2v60.b 0.6 0.2 0.4 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.4 0.3 0.2 0.2 0.2
0
0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.4 0.2 0.3 0.2 0.2 0.2 0.2
[1] 2v61.a 0.6 0.2 0.3 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.2 0.2
0
0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1 0.1 0.1
[1] 2vrl.b 0.5 0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2
0
0.2 0.2 0.4 0.3 0.4 0.2 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2
[1] 2vrm.b 0.6 0.2 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.3 0.3 0.1 0.2 0.2 0.2 0.2 0.2
0
0.2 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.2
[1] 2vz2.a 0.6 0.1 0.4 0.1 0.2 0.3 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.2 0.2 0.1 0.2 0.2
0
0.3 0.2 0.3 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.2 0.1 0.1
[1] 2xcg.b 0.7 0.3 0.6 0.3 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.5 0.3 0.3 0.6 0.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3
0
0.2 0.2 0.3 0.2 0.3 0.6 0.3 0.5 0.3 0.3 0.3 0.3
[1] 2xfn.a 0.6 0.2 0.4 0.2 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.2
0
0.1 0.2 0.2 0.3 0.5 0.2 0.4 0.2 0.2 0.2 0.2
[1] 2xfo.a 0.6 0.3 0.5 0.3 0.3 0.4 0.3 0.2 0.3 0.3 0.2 0.4 0.3 0.4 0.3 0.4 0.2 0.2 0.5 0.4 0.2 0.2 0.3 0.3 0.2 0.4 0.3 0.3 0.2 0.1
0
0.3 0.2 0.3 0.5 0.2 0.5 0.3 0.2 0.2 0.3
[1] 2xfo.b 0.6 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3
0
0.3 0.3 0.4 0.2 0.3 0.2 0.2 0.2 0.2
[1] 2xfp.b 0.7 0.3 0.6 0.4 0.4 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.2 0.2 0.2 0.3
0
0.3 0.6 0.3 0.5 0.3 0.3 0.3 0.3
[1] 2xfq.b 0.6 0.3 0.4 0.3 0.2 0.4 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0
0.4 0.3 0.3 0.2 0.3 0.3 0.3
[1] 2xfu.a 0.6 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.5 0.4 0.5 0.3 0.4 0.4 0.5 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.6 0.5 0.5 0.4 0.6 0.4
0
0.4 0.3 0.4 0.4 0.4 0.4
[1] 3po7.a 0.6 0.1 0.4 0.1 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.3 0.2 0.2 0.1 0.3 0.1 0.1 0.4 0.3 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4
0
0.3 0.2 0.1 0.1 0.1
[1] 3zyx.b 0.5 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.5 0.4 0.5 0.3 0.5 0.3 0.3 0.3
0
0.3 0.3 0.3 0.3
[1] 4a79.b 0.5 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3
0
0.2 0.2 0.2
[1] 4a7a.a 0.6 0.1 0.4 0.2 0.2 0.3 0.2 0.1 0.1 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.1 0.4 0.3 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2
0
0.1 0.1
[1] 4crt.a 0.6 0.1 0.3 0.1 0.2 0.3 0.2 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1
0
0.1
[1] 5mrl.a 0.6 0.1 0.3 0.1 0.2 0.3 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.1 0.3 0.3 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.3 0.4 0.1 0.3 0.2 0.1 0.1
0
[Binding site backbone RMSD matrix]

Site full-atom RMSD (median 0.2 Å)

Pockets (x) vs pockets (y) colored by RMSD of all site residue atoms

zoom: [−] [+]; [view as image]; [download as text]

pocketpocket
≥10 Å
9 Å
8 Å
7 Å
6 Å
5 Å
4 Å
3 Å
2 Å
1 Å
0 Å
1gos.b
1oj9.a
1oja.a
1ojc.a
1s2q.a
1s2y.a
1s3b.b
1s3e.a
2bk3.a
2bk4.a
2bk5.a
2byb.a
2c64.a
2c64.b
2c65.a
2c66.b
2c67.a
2c70.a
2c72.a
2c73.b
2c75.a
2c76.a
2v5z.a
2v60.b
2v61.a
2vrl.b
2vrm.b
2vz2.a
2xcg.b
2xfn.a
2xfo.a
2xfo.b
2xfp.b
2xfq.b
2xfu.a
3po7.a
3zyx.b
4a79.b
4a7a.a
4crt.a
5mrl.a
[1] 1gos.b
0
0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.8 0.8 0.9 0.9 0.8 0.8 0.8
[1] 1oj9.a 0.8
0
0.6 0.2 0.2 0.5 0.3 0.1 0.1 0.3 0.3 0.3 0.2 0.3 0.2 0.4 0.3 0.1 0.6 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.6 0.3 0.5 0.4 0.6 0.4 0.6 0.1 0.6 0.6 0.4 0.4 0.4
[1] 1oja.a 0.8 0.6
0
0.5 0.5 0.4 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.6 0.4 0.4 0.5 0.1 0.6 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.8 0.6 0.6 0.6 0.7 0.6 0.4 0.5 0.5 0.7 0.7 0.6 0.6
[1] 1ojc.a 0.7 0.2 0.5
0
0.2 0.5 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.2 0.5 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.2 0.6 0.6 0.4 0.4 0.4
[1] 1s2q.a 0.7 0.2 0.5 0.2
0
0.4 0.3 0.2 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.5 0.4 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.7 0.4 0.5 0.5 0.6 0.3 0.6 0.3 0.6 0.5 0.5 0.5 0.4
[1] 1s2y.a 0.8 0.5 0.4 0.5 0.4
0
0.3 0.5 0.5 0.5 0.6 0.4 0.5 0.4 0.6 0.3 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.6 0.7 0.6 0.8 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6
[1] 1s3b.b 0.8 0.3 0.5 0.3 0.3 0.3
0
0.3 0.3 0.4 0.5 0.3 0.3 0.3 0.4 0.3 0.4 0.3 0.5 0.5 0.4 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.8 0.5 0.6 0.6 0.7 0.5 0.6 0.3 0.6 0.5 0.5 0.5 0.5
[1] 1s3e.a 0.7 0.1 0.5 0.2 0.2 0.5 0.3
0
0.1 0.3 0.3 0.3 0.2 0.2 0.2 0.4 0.3 0.2 0.5 0.3 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.1 0.6 0.6 0.4 0.4 0.4
[1] 2bk3.a 0.8 0.1 0.6 0.2 0.3 0.5 0.3 0.1
0
0.3 0.3 0.3 0.2 0.3 0.2 0.5 0.4 0.1 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.6 0.3 0.5 0.5 0.6 0.4 0.7 0.1 0.7 0.6 0.4 0.4 0.4
[1] 2bk4.a 0.7 0.3 0.5 0.3 0.3 0.5 0.4 0.3 0.3
0
0.2 0.4 0.3 0.4 0.3 0.5 0.2 0.3 0.5 0.4 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.5 0.4 0.4 0.4 0.6 0.3 0.6 0.7 0.5 0.5 0.5
[1] 2bk5.a 0.8 0.3 0.5 0.3 0.4 0.6 0.5 0.3 0.3 0.2
0
0.5 0.3 0.5 0.4 0.6 0.2 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.6 0.3 0.4 0.4 0.4 0.4 0.6 0.3 0.6 0.7 0.5 0.5 0.5
[1] 2byb.a 0.7 0.3 0.5 0.3 0.2 0.4 0.3 0.3 0.3 0.4 0.5
0
0.3 0.3 0.4 0.4 0.4 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.7 0.4 0.5 0.5 0.6 0.4 0.6 0.3 0.6 0.6 0.5 0.5 0.5
[1] 2c64.a 0.8 0.2 0.6 0.2 0.3 0.5 0.3 0.2 0.2 0.3 0.3 0.3
0
0.2 0.2 0.4 0.4 0.2 0.6 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.7 0.3 0.5 0.4 0.6 0.4 0.6 0.2 0.6 0.6 0.4 0.4 0.4
[1] 2c64.b 0.7 0.3 0.5 0.3 0.3 0.4 0.3 0.2 0.3 0.4 0.5 0.3 0.2
0
0.3 0.3 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.7 0.4 0.6 0.5 0.7 0.4 0.6 0.3 0.6 0.5 0.5 0.5 0.5
[1] 2c65.a 0.8 0.2 0.6 0.3 0.3 0.6 0.4 0.2 0.2 0.3 0.4 0.4 0.2 0.3
0
0.5 0.4 0.2 0.6 0.4 0.3 0.3 0.3 0.3 0.2 0.4 0.4 0.3 0.7 0.4 0.5 0.5 0.6 0.4 0.7 0.2 0.7 0.6 0.4 0.4 0.5
[1] 2c66.b 0.8 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.5 0.5 0.6 0.4 0.4 0.3 0.5
0
0.5 0.4 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.8 0.5 0.6 0.6 0.7 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6
[1] 2c67.a 0.8 0.3 0.4 0.3 0.4 0.5 0.4 0.3 0.4 0.2 0.2 0.4 0.4 0.4 0.4 0.5
0
0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.6 0.3 0.5 0.4 0.4 0.4 0.5 0.3 0.6 0.6 0.5 0.5 0.5
[1] 2c70.a 0.8 0.1 0.5 0.2 0.3 0.5 0.3 0.2 0.1 0.3 0.3 0.3 0.2 0.3 0.2 0.4 0.3
0
0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.3 0.3 0.2 0.6 0.3 0.5 0.4 0.6 0.4 0.6 0.1 0.6 0.6 0.4 0.4 0.4
[1] 2c72.a 0.8 0.6 0.1 0.5 0.5 0.4 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.4 0.5
0
0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.8 0.6 0.6 0.6 0.7 0.6 0.4 0.5 0.5 0.7 0.7 0.6 0.6
[1] 2c73.b 0.7 0.3 0.6 0.3 0.4 0.5 0.5 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.5 0.4 0.3 0.6
0
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.7 0.4 0.5 0.5 0.6 0.4 0.6 0.3 0.6 0.6 0.5 0.5 0.5
[1] 2c75.a 0.8 0.3 0.6 0.2 0.3 0.5 0.4 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.2 0.5 0.3
0
0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.2 0.6 0.6 0.5 0.5 0.5
[1] 2c76.a 0.8 0.2 0.5 0.2 0.3 0.5 0.4 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.2 0.5 0.3 0.2
0
0.2 0.2 0.2 0.3 0.2 0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.2 0.6 0.6 0.4 0.4 0.4
[1] 2v5z.a 0.7 0.2 0.5 0.2 0.2 0.5 0.3 0.1 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.2 0.5 0.3 0.2 0.2
0
0.2 0.2 0.3 0.3 0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.2 0.6 0.6 0.4 0.4 0.4
[1] 2v60.b 0.8 0.2 0.6 0.2 0.2 0.5 0.4 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.4 0.2 0.6 0.3 0.3 0.2 0.2
0
0.2 0.3 0.3 0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.2 0.6 0.6 0.4 0.4 0.4
[1] 2v61.a 0.8 0.2 0.5 0.2 0.3 0.5 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.4 0.3 0.1 0.5 0.3 0.2 0.2 0.2 0.2
0
0.3 0.3 0.2 0.6 0.2 0.5 0.4 0.5 0.4 0.6 0.1 0.6 0.6 0.4 0.4 0.4
[1] 2vrl.b 0.7 0.3 0.5 0.2 0.3 0.5 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3
0
0.2 0.3 0.6 0.3 0.5 0.4 0.6 0.3 0.6 0.3 0.6 0.6 0.5 0.5 0.5
[1] 2vrm.b 0.8 0.3 0.5 0.2 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.5 0.3 0.3 0.5 0.3 0.3 0.2 0.3 0.3 0.3 0.2
0
0.2 0.6 0.3 0.5 0.4 0.5 0.3 0.6 0.3 0.6 0.6 0.5 0.5 0.5
[1] 2vz2.a 0.8 0.2 0.5 0.2 0.3 0.5 0.4 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.2 0.5 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2
0
0.6 0.3 0.5 0.4 0.5 0.4 0.6 0.2 0.6 0.6 0.4 0.4 0.4
[1] 2xcg.b 0.9 0.6 0.8 0.6 0.7 0.8 0.8 0.6 0.6 0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.6 0.6 0.8 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0
0.5 0.4 0.4 0.4 0.6 0.7 0.6 0.8 0.8 0.7 0.8 0.7
[1] 2xfn.a 0.8 0.3 0.6 0.3 0.4 0.6 0.5 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.3 0.3 0.6 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.5
0
0.4 0.4 0.4 0.3 0.7 0.2 0.7 0.6 0.5 0.5 0.5
[1] 2xfo.a 0.9 0.5 0.6 0.5 0.5 0.7 0.6 0.5 0.5 0.5 0.4 0.5 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4
0
0.3 0.4 0.5 0.6 0.5 0.7 0.7 0.6 0.6 0.6
[1] 2xfo.b 0.8 0.4 0.6 0.4 0.5 0.6 0.6 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.5 0.6 0.4 0.4 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3
0
0.5 0.4 0.5 0.4 0.6 0.7 0.6 0.6 0.6
[1] 2xfp.b 0.9 0.6 0.7 0.5 0.6 0.8 0.7 0.5 0.6 0.4 0.4 0.6 0.6 0.7 0.6 0.7 0.4 0.6 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.4 0.4 0.4 0.5
0
0.5 0.8 0.5 0.8 0.8 0.7 0.7 0.7
[1] 2xfq.b 0.8 0.4 0.6 0.3 0.3 0.5 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.6 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.6 0.3 0.5 0.4 0.5
0
0.7 0.4 0.7 0.6 0.5 0.5 0.5
[1] 2xfu.a 0.8 0.6 0.4 0.6 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.5 0.5 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.6 0.5 0.8 0.7
0
0.6 0.5 0.7 0.7 0.7 0.7
[1] 3po7.a 0.8 0.1 0.5 0.2 0.3 0.5 0.3 0.1 0.1 0.3 0.3 0.3 0.2 0.3 0.2 0.5 0.3 0.1 0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.3 0.3 0.2 0.6 0.2 0.5 0.4 0.5 0.4 0.6
0
0.6 0.6 0.4 0.4 0.4
[1] 3zyx.b 0.9 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.5 0.6
0
0.5 0.5 0.5 0.5
[1] 4a79.b 0.9 0.6 0.7 0.6 0.5 0.6 0.5 0.6 0.6 0.7 0.7 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.7 0.7 0.8 0.6 0.7 0.6 0.5
0
0.4 0.4 0.4
[1] 4a7a.a 0.8 0.4 0.7 0.4 0.5 0.6 0.5 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.6 0.5 0.4 0.7 0.5 0.5 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.7 0.5 0.6 0.6 0.7 0.5 0.7 0.4 0.5 0.4
0
0.1 0.2
[1] 4crt.a 0.8 0.4 0.6 0.4 0.5 0.6 0.5 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.8 0.5 0.6 0.6 0.7 0.5 0.7 0.4 0.5 0.4 0.1
0
0.2
[1] 5mrl.a 0.8 0.4 0.6 0.4 0.4 0.6 0.5 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.6 0.5 0.4 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.7 0.5 0.6 0.6 0.7 0.5 0.7 0.4 0.5 0.4 0.2 0.2
0
[Binding site full-atom RMSD matrix]







[show 3D visualization]

[ENTRY 2D visualization]

L C X E | Background Color: | Anaglyph Stereo:

loading...